Introduction to Theoretical Ecology Assignment 7

Linear Stability Analysis of Lotka-Volterra Competition Model
Continuing on the assignment last week, in this assignment you will analyze the same Lotka-Volterra competition model using linear stability analysis:

$$
\begin{aligned}
& \frac{d N_{1}}{d t}=r_{1} N_{1}\left(1-\frac{N_{1}+\alpha N_{2}}{K_{1}}\right) \\
& \frac{d N_{2}}{d t}=r_{2} N_{2}\left(1-\frac{N_{2}+\beta N_{1}}{K_{2}}\right)
\end{aligned}
$$

, where r_{1} and r_{2} are the intrinsic population growth rates; K_{1} and K_{2} are the carrying capacities; α is the effect of N_{2} on the population growth of $N_{1} ; \beta$ is the effect of N_{1} on the population growth of N_{2}.

1. Perform linear stability analysis for all four equilibrium points you got in the previous assignment. Your answer should include (1) the Jacobian matrix evaluated at the equilibrium point, (2) the two eigenvalues of the Jacobian matrix (in the case of two species coexistence, simply show the characteristic equation), and (3) the stability criteria. (10 pts; 2.5 pts for each equilibrium point)

Solution:

(1) Equilibrium point (0,0)

- Jacobian matrix: $\left[\begin{array}{cc}r_{1} & 0 \\ 0 & r_{2}\end{array}\right]$
- Eigenvalues: r_{1} and r_{2}
- Stability criteria: always unstable since both r_{1} and $r_{2}>0$
(2) Equilibrium point ($K_{1}, 0$)
- Jacobian matrix: $\left[\begin{array}{cc}-r_{1} & -r_{1} \alpha \\ 0 & r_{2}\left(1-\beta \frac{K_{1}}{K_{2}}\right)\end{array}\right]$
- Eigenvalues: $-r_{1}$ and $r_{2}\left(1-\beta \frac{K_{1}}{K_{2}}\right)$
- Stability criteria: stable if $\frac{K_{1}}{K_{2}}>\frac{1}{\beta}$
(3) Equilibrium point ($0, K_{2}$)
- Jacobian matrix: $\left[\begin{array}{cc}r_{1}\left(1-\alpha \frac{K_{2}}{K_{1}}\right) & 0 \\ -r_{2} \beta & -r_{2}\end{array}\right]$
- Eigenvalues: $r_{1}\left(1-\alpha \frac{K_{2}}{K_{1}}\right)$ and $-r_{2}$
- Stability criteria: stable if $\frac{K_{2}}{K_{1}}>\frac{1}{\alpha}$
(4) Equilibrium point $\left(\frac{K_{1}-\alpha K_{2}}{1-\alpha \beta}, \frac{K_{2}-\beta K_{1}}{1-\alpha \beta}\right)$
- Jacobian matrix: $\left[\begin{array}{ll}r_{1} N_{1}^{*}\left(-\frac{1}{K_{1}}\right) & r_{1} N_{1}^{*}\left(-\frac{\alpha}{K_{1}}\right) \\ r_{2} N_{2}^{*}\left(-\frac{\beta}{K_{2}}\right) & r_{2} N_{2}^{*}\left(-\frac{1}{K_{2}}\right)\end{array}\right]$
(No need to plug in the actual equilibrium values $N_{1}{ }^{*}$ and $N_{2}{ }^{*}$ in this step)
- Characteristic equation:

$$
\begin{aligned}
& \left(r_{1} N_{1}^{*}\left(-\frac{1}{K_{1}}\right)-\lambda\right)\left(r_{2} N_{2}^{*}\left(-\frac{1}{K_{2}}\right)-\lambda\right)-r_{1} r_{2} N_{1}^{*} N_{2}^{*}\left(\frac{\alpha \beta}{K_{1} K_{2}}\right)=0 \\
& \rightarrow \lambda^{2}+\left(\frac{r_{1} N_{1}^{*}}{K_{1}}+\frac{r_{2} N_{2}^{*}}{K_{2}}\right) \lambda+\frac{r_{1} r_{2} N_{1}^{*} N_{2}^{*}}{K_{1} K_{2}}(1-\alpha \beta)=0
\end{aligned}
$$

- Stability criteria:

$$
\begin{aligned}
-\frac{b}{a} & =\lambda_{1}+\lambda_{2}<0 \rightarrow \frac{r_{1} N_{1}^{*}}{K_{1}}+\frac{r_{2} N_{2}^{*}}{K_{2}}>0 \\
\frac{c}{a} & =\lambda_{1} \lambda_{2}>0 \rightarrow \frac{r_{1} r_{2} N_{1}^{*} N_{2}^{*}}{K_{1} K_{2}}(1-\alpha \beta)>0
\end{aligned}
$$

\rightarrow stable if $N_{1}{ }^{*}$ and $N_{2}{ }^{*}>0$ (feasibility) \& $\alpha \beta<1$ (stabilization)

