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 RESOURCES: A GRAPHICAL-MECHANISTIC APPROACH TO
 COMPETITION AND PREDATION

 DAVID TILMAN

 Department of Ecology and Behavioral Biology, 318 Church Street S.E., University of Minnesota,
 Minneapolis, Minnesota 55455

 Submitted August 7, 1978; Accepted April 27, 1979

 In such circumstances the question as to the causes of the victory of certain

 forms over others presents itself in the following aspect: By aid of what mor-

 phological and physiological advantages of the process of the individual does

 one plant suppress another? [G.F. Gause (1934)].

 Traditional models of competition, which form the basis of much of current

 ecological thought and theory, are nonmechanistic. Competitive interactions are
 summarized in the negative effects of each species on the growth of all others,
 with no explicit statement of the causes of such negative effects. This limitation
 has been recognized since the pioneering work of Lotka (1924), Volterra (1931),

 and Gause (1934, see above). For instance, Gause (1932), in estimating the
 coefficients of the Lotka-Volterra equations, had to rely on intuition to predict
 how amounts of inhibitory substances might affect competition between two

 yeasts. The competition equations provided no guidance. Although a valid de-
 scription of competition at steady state (May 1973), the Lotka-Volterra equations
 are more phenomenological than mechanistic and thus more descriptive than

 predictive.

 Two main approaches have been taken to make competition theory less
 phenomenological: (1) the use of measures of resource utilization overlap to estimate
 the parameters of the Lotka-Volterra equations, and (2) the formulation of models
 that explicitly state the mechanisms of competition between species. The resource

 utilization overlap estimate of competition coefficients (e.g., Horn 1966; MacAr-
 thur and Levins 1967; Colwell and Futuyma 1971; Schoener 1974) has been
 hampered by lack of a strong theoretical basis for making such estimates, as May

 (1975) noted. On the other hand, mechanistic models of resource competition
 require knowledge of the mechanisms of resource acquisition and utilization by

 particular species. MacArthur (1972) warned that because such models would
 have to be designed to fit each species, they would lack the generality that was the

 strength of the classical approach. A comparison of several such models reveals

 almost as many approaches as there are workers, as shown, for example, by the
 models of predation by Holling (1959, 1965, 1966), Murdoch (1969), Canale (1969,
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 COMPETITION AND PREDATION 363

 1970), Real (1977), Levin et al. (1977), and Chao et al. (1977), or the models of

 competition by MacArthur (1972), Maguire (1973), Stewart and Levin (1973),

 Peterson (1975), Taylor and Williams (1975), Hsu et al. (1977), and Tilman (1977).

 All these models share two elements. The first is an emphasis on consumer-

 resource interactions. The second is an acknowledgment that there are different

 categories of both consumers and resources. In this paper I first offer a way to

 classify resources and consumers. The classification is an extension of mi-

 croeconomic theory, which was introduced to ecology by Rapport (1971) and

 Covich (1972), and which has been employed in the papers of Covich (1974), Leon

 and Tumpson (1975), and Rapport and Turner (1975, 1977). The shape of the
 resource-dependent growth isocline of a species is used to classify resources as

 either (1) essential, (2) substitutable, or (3) hemi-essential. Essential resources are
 further classified as being either interactive or noninteractive. Substitutable re-

 sources- are classified as being either complementary, perfectly substitutable,

 antagonistic, or switching.
 I then derive a simple graphical technique that allows prediction of the out-

 comes of consumer-resource interactions when numerous species compete for
 two resources. The approach requires information on (1) resource class, (2)

 resource consumption rates (resource preferences), (3) resource supply rates, and

 (4) species-specific mortality rates. The approach is used to explore the qualitative
 patterns of species dominance and coexistence that can result from competition
 between several species for two resources. The analysis suggests that the type of

 resource for which competition occurs may greatly influence the patterns of
 species diversity in communities.

 This is not meant to be a complete or exhaustive treatment of resource-based

 approaches to population and community ecology. I present these ideas partly to

 demonstrate the importance of knowing the type of resource for which competi-
 tion occurs and to show the range of questions which can be addressed with a
 simple, graphical mechanistic theory of interspecific interaction. I stress the
 applicability of this work to both competition and predation because predator-
 prey interactions are a subset of consumer-resource interactions. Although a

 living prey is a more complex resource than an inorganic nutrient, the central
 interaction between several predators and several prey may be expressed in the
 terminology of the consumer-resource approach. I limit the mathematics pre-
 sented in the main text to algebra and graphical techniques. More thorough
 treatments of specific cases may be found in the Appendix of this paper, and in
 Taylor and Williams (1975), Leon and Tumpson (1975), and Maguire (1973).

 Although I consider only two resources at a time, the approach is easily extended
 to any number of resources.

 WHAT ARE RESOURCES?

 If only one factor were to be considered, the answer to the question "What is a

 resource?" would be straightforward. A resource is a factor which, through some
 range of availabilities, leads to higher population growth rates as its availability is
 increased and which is consumed, in the broad sense, by the population.
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 364 THE AMERICAN NATURALIST

 If several factors are considered, the question is more difficult. The availability

 of one factor may influence the growth response of a population to a second

 factor. There may be some ranges of availability of one factor for which changes in
 the availability of a second factor do not lead to changes in a population's growth

 rate. However, I contend that it is useful to consider two factors to be resources if
 each meets the definition offered above for some availability of the other factor.
 The dependence of population growth on the joint availability of two resources is
 the basis for a pairwise classification of resources.

 Consider a set of generalized equations:

 dN'd = fi(R1, R2, . .R) - mi, and

 dR ~~~~n
 d = g(R)- . .. Rk) h(R Rk), dt g3(RJR),-

 where Ni is the population density of species i; Rj is the availability of resource];
 mi is the mortality rate of species i; fi is the functional relationship between the
 availabilities of all resources and the per capita rate of population change for

 species i; gj is the function describing the supply rate of resource j; hij is the
 function describing the amount of resource j required to produce each new
 individual of species i; for a total of n species competing for k resources.

 These equations show that the dynamics of consumer-resource interactions

 depend on the functions describing resource-dependent growth, resource supply,
 resource consumption, and on the mortality rate experienced by each species.

 These equations embody two critical assumptions. First, they assume that
 species interact only through their use of resources. For all cases considered,

 afi&(Nj = 0 for all i andj. If any of these partial derivatives were not zero, it would
 indicate direct interaction either within or between species, rather than pure

 resource competition. Secondly, these equations assume that resources are not

 interactive, i.e., that (&gi&R1)* = 0 for i f j, where the asterisk means the
 function is to be evaluated at equilibrium. This later assumption is valid for many

 types of resources, but may be invalid for resources which are themselves in-
 teracting organisms (Lynch 1978) if their mechanism of interaction is not directly
 included in the model.

 The function fi(R1, R2) is the basis for a pairwise classification of resources. I
 class as essential those pairs of resources for whichfi(R 1 = 0, R2) S 0 for all R2 and
 fi(R1, R2 = 0) - 0 for allR1. Essential resources are both required for growth, with
 no growth possible if either one is lacking. This is easily illustrated in the R1, R2
 resource quarter plane (fig. 1) by showing the locus of points of R1 and R2 for

 which the consumer has a given value off%(R1, R2), i.e., a given reproductive rate.
 The curves of figure 1 are the values of R 1 and R2 for whichfi(R 1, R 2) = y, and may
 be called the y-growth isoclines. Note that y is the rate of reproduction in the
 absence of mortality (m%). Essential resources have isoclines which never inter-
 sect either the R1 or R2 axis, as their definition demands. Assuming that neither
 resource is inhibitory at high availabilities, these isoclines can have one of two

 shapes. They may form a perfect right-angle corner (fig. 1A), in which case I call
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 FIG. 1.-Growth isoclines for different classes of resources. The curves of each figure
 show amounts of two resources (R1 and R2) that a species requires in order to have the
 specified per capita reproductive rate (y). In all cases shown, increases in one or both
 resources will lead to increases iin growth rate, up to the maximal rate r. Cases C, D, E, and F
 illustrate the four types of substitutable resources. See text.
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 366 THE AMERICAN NATURALIST

 them noninteractive essential resources, or they may have a rounded corner (fig.
 iB), in which case I call them interactive essential resources.

 I class as substitutable those resources for whichfi(RI = 0, R2) > 0 for some R2
 and for whichfi(R1, R2 = 0) > 0 for some R1. They are substitutable for each other
 because each can sustain reproduction when the other is lacking. Their y-growth
 isoclines will intersect both axes, as shown (fig. 1C, ID, IE, IF). If the isoclines

 form a straight line (fig. IC), the resources are perfectly substitutable. If the
 isoclines bow in toward the origin (fig. ID), they are complementary. If they bow
 away from the origin (fig. IF), they are antagonistic, with a right angle curve
 representing perfectly antagonistic resources (fig. IF), which I term switching.

 I class as hemi-essential those pairs of resources for whichfi(R, = 0, R2) S 0 for
 all R2 but for which fi(R1, R2 = 0) > 0 for some R1. A pair of resources are
 hemi-essential if one resource is required for and can sustain reproduction on its
 own, and the second resource can partially substitute for the first, but is not in
 itself capable of sustaining growth in the absence of the first element. They are a

 pair, one of whose members is required or essential-hence, the term hemi-
 essential. If a pair of resources are hemi-essential, the y-growth isoclines will
 intersect the axis of the nutritionally complete resource and will not touch the

 other axis. The nutritionally complete resource in figure 1G is R2, and R1 is the
 nutritionally complete resource in figure lH.

 I have presented these classifications of resources with little biological justifica-
 tion. I will now discuss each type in more depth, suggest what resources will fall
 into each category, justify the categories nutritionally and ecologically, and sug-

 gest some expressions forfi(RI, R2). Although the resource consumption prefer-
 ences of a species should be closely related to the shape of its growth isoclines
 (Rapport 1971), I do not explore this question in this paper. Rather, assumptions
 about consumption preferences for each class of resource are presented with brief
 justification because such assumptions are not important in the analysis of re-
 source competition.

 Essential Resources

 All organisms require an energy source and various forms of N, P, C, 0, H, S,
 Fe, etc., in order to live. Autotrophs most often obtain these elements separately

 from their environment. Heterotrophs, being direct or indirect consumers of
 autotrophs, obtain several basic nutritional elements in the same food item. For
 this reason it is likely that the majority of resources potentially limiting to auto-
 trophic plants will be essential, whereas those limiting heterotrophs are more likely
 hemi-essential or substitutable. The resources that I call essential were termed
 "perfectly complementary" by Leon and Tumpson (1975). Because complemen-
 tarity is a property of substitutable resources, I prefer to call these essential
 resources, emphasizing the growth requirement for both. This terminology is

 consistent with that used in plant and animal nutrition.
 Numerous studies have demonstrated that inorganic plant nutrients are essen-

 tial (see any introductory plant physiology text, such as Salisbury and Ross 1969).
 A few recent experiments have indicated that plant nutrients may be noninterac-
 tive essential resources. Droop (1973) proposed that essential resources should be
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 COMPETITION AND PREDATION 367

 multiplicative, a special type of interactive essential resource. Droop (1974) tested

 this hypothesis using a marine alga, grown with vitamin B-12 and phosphate as
 limiting nutrients, and found that his results fit the noninteractive model better

 than the interactive model. Rhee (1978) similarly demonstrated that phosphate and
 nitrate are noninteractive essential resources for a freshwater green alga. Because

 the available experimental evidence indicates that plant nutrients are noninterac-

 tive essential resources, I shall consider only this category for the rest of this

 paper, and shall call noninteractive essential resources simply "essential re-
 sources." However, as Taylor and Williams (1975) noted, this distinction is of
 slight ecological importance.

 Not all pairs of plant nutrients will be essential with respect to each other.
 Consider N2, NO -2, NO-', NO+1-four forms of nitrogen each of which can
 be used by some plants as the sole source of nitrogen, and P0 3. P0 i-3is

 essential relative to NO2 2 or NO-1 or NH+1, but these forms of nitrogen may be

 substitutable relative to each other. N2 can only be used as a nitrogen source by
 nitrogen-fixing organisms. Because of the high energetic cost of reducing atmo-
 spheric N2 and because of the need to induce specialized systems to do this, it
 might be that N2 will be found to be antagonistic or even switching relative to the
 reduced forms of nitrogen which may be used by nitrogen-fixing organisms. Thus,

 not all pairs of plant nutrients are likely to be essential resources. All usable forms
 of nitrogen-containing compounds are likely to be essential relative to all usable

 forms of phosphorus-containing compounds. Such considerations allow the pair-
 wise definitions offered here to be extended to groups of resources.

 For a pair of essential resources, the growth rate of a species will be determined
 by either one or the other resource, whichever is more limiting. The region of
 values of R1 and R2 in which a species is limited by one or the other resource is
 defined by a curve from the origin through the corners of all the growth isoclines
 (fig. 2A). The slope of this curve at any particular growth rate is the ratio of
 resources which is required for growth at that rate. This curve of optimum

 proportion of the two resources may bend as shown or be a straight line.
 At a particular growth rate, the consumption rate of R1 and R2 might be

 proportional to the tangent to this curve at that growth rate. This is to say,
 resources might be consumed in the proportion they are required for steady-state
 growth. If one resource were consumed in excess of this proportion, there would
 be no gain in current growth rate (unless excess consumption were detrimental to
 a competitor or resource availability fluctuated), and there might be a loss if such
 excess consumption had a reproductive cost. However, resource consumption
 and growth isoclines cannot be considered independently. As will be discussed, a
 change in consumption may affect both the position and shape of the growth
 isoclines. For this presentation I assume consumption of essential resources is

 proportional to requirement. Such instantaneous rates of consumption are shown
 with vectors in figure 2A.

 As Leon and Tumpson (1975) noted, and as used by Tilman (1977), essential
 resources may be easily modeled. In the absence of mortality, the growth re-
 lationship is

 Nd! = mmn [fi(R3)]. (2)
 Nidt j=1,k
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 FIG. 2. -Consumption vectors. The vectors shown represent the proportion of R 1 and R2
 consumed by a species at a particular growth rate. The slope of each vector is the rate of R,
 consumption divided by the rate of R , consumption. The length of each vector can symbolize
 the per capita rate of resource consumption, but no biological significance should be attached
 to the lengths of the consumption vectors in this figure.

 The form offi(R3) for all resources defines the shape of the optimal proportion line
 and the placement of the Py-growth isoclines. Experimental work to date indicates
 that fi(Rj) has the shape of the Monod function (Monod 1950; e.g., Tilman and
 Kilham 1976) or the type I, II, III curves of Holling (1959). High levels of some
 resources may inhibit growth, in which case the growth isoclines may form closed
 curves (Maguire 1973).

 Hemi-essential Resources

 A pair of resources will be hemi-essential if one is nutritionally complete and the
 other lacks some nutritional element or elements available in relative excess in the
 first resource.

 For an herbivore, some fruits may be hemi-essential relative to foods such as
 seeds. Many fruits are rich in carbohydrates, fats, or oils, but lack one or more
 nutritionally required amino acids. No reproduction would be possible on a
 long-term diet of only such fruit. However, the caloric content of the fruit would
 allow it to supplement a diet of other foods which were relatively rich in protein,
 as are many seeds and animals.
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 COMPETITION AND PREDATION 369

 The rate of consumption of two hemi-essential foods should depend on their

 absolute availabilities and on the extent of hemi-essential complementarity. In

 figure 2B, I show with vectors a guess as to how an optimally foraging organism

 might consume two such resources. In the absence of R1 (the incomplete food) the
 diet would be totally R2, since R2 by itself can sustain growth. As more R1 is
 available, R1 would increase in the diet in some compromise between at least two
 factors: (1) consumption in proportion to abundance or ease of capture; (2)

 consumption in the proportion that gives maximal use of the two foods. For very
 high availabilities of R1, R1 and R2 would be consumed purely in that proportion

 which leads to equal limitation by the nutritional elements which complement
 each other.

 Substitutable Resources

 Resource items that can each support growth on their own are substitutable

 relative to each other. Most of the dietary items of herbivores and carnivores are
 probably substitutable. Substitutability only defines the end points of the growth
 isoclines, stating that all growth isoclines must touch both the R1 and R2 axes. The

 shape of the curve joining these two points is the basis for the definition of
 types of substitutable resources.

 Perfectly substitutable resources. -Two resources are perfectly substitutable if

 the two can be substituted for each other with equal effect at all abundances of the
 two resources. This would mean that an amount of resource 2, R2, would be

 equivalent to an amount of C1R, of resource 1, for all values of R2, with C1 a
 constant (i.e., R2 = C1R1 and R1 = R21C1). Thus, fi(R1, R2) = fi(Rf1 + R21C1, 0) =
 fi(O, R2 + C1R ) for all values of R1 and R2. Considering the nutritional complexity
 of most foods, I doubt if many foods would be perfectly substitutable for each
 other. However, this often may be a useful approximation.

 For a homogeneous environment in which the chance of an encounter between

 a consumer and a resource is proportional to the abundance of the resource,

 assuming that the consumer is not limited by various components of handling

 time, consumption should be proportional to the abundance of the resources. This
 is shown with the vectors in figure 2C. Such vectors always point toward the
 origin. It is easy to devise situations for which this would not be the case (Rapport
 1971), but for brevity I will not consider them in this paper.

 Growth isoclines and consumption vectors are intimately related to each other.
 For instance, even if two resources were nutritionally perfectly substitutable, a
 growth isocline would only be a straight line if the resources were consumed in

 particular proportions. To illustrate this with an extreme case, consider the
 growth isocline of a species that did not consume any of one resource until its

 availability exceeded a certain limit. Such an isocline could not be a straight line.
 Optimal foraging in homogeneous environments may give straight-line growth
 isoclines for nutritionally perfectly substitutable resources, but would not give
 such straight isoclines in a heterogeneous environment, as will be discussed
 shortly.

 Complementary resources. -Two resources, each containing different propor-
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 370 THE AMERICAN NATURALIST

 tions of two nutritionally essential elements, may, when consumed together, give
 a higher growth rate than predicted for a linearly weighted sum. Such com-
 plementarity has been noted for many foods of herbivores, and has been the
 subject of much research for both livestock and humans. For instance, humans
 eating certain types of beans with rice can increase the usable protein content of
 their food 40% over the sum of the usable protein of beans and rice eaten
 separately because beans are rich in lysine, an essential amino acid in low
 abundance in rice; rice is rich in sulfur-containing amino acids, which are relatively
 lacking in beans (Lappe 1971). Such nutritional complementarity occurs only if
 two foods are consumed within a short time of each other, an important restraint

 on optimization of diet.

 If two resources are complementary, there will be a proportion which leads to
 maximal complementarity at any growth rate. This is shown with a dotted line in
 figure 2D. The vectors of figure 2D show a compromise between consumption
 equal to optimal proportion and consumption proportional to abundance or ease of
 capture.

 Antagonistic resources.-Antagonistic resources are nutritionally substituta-
 ble, but have growth isoclines which bow away from the origin (figs. 2E, 2F). This
 means that, when these resources are consumed together, an organism requires
 more than the linearly weighted total in order to attain a given reproductive rate.
 Such a phenomenon could be caused by synergistic effects of toxic compounds.
 For instance, Janzen et al. (1977) demonstrated that nonprotein amino acids, such
 as D,L-pipecolic acid and djenkolic acid, had no significant effect on growth of a
 bruchid beetle if they were consumed separately, but had a significant synergistic
 effect if consumed together. Thus, if one seed contained D,L-pipecolic acid and
 another djenkolic acid, less growth might be possible from consumption of the two
 seeds than from a linearly weighted consumption of either the one seed or the
 other. Janzen et al. (1977) noted several other cases of synergism which could lead
 to antagonistic resources. Although it is dangerous to argue by analogy, the
 known synergisms of various drugs (many being secondary plant compounds)
 used in human medicine suggest that nutritional antagonisms may occur. How-
 ever, spatial heterogeneity may be a more likely cause of resource antagonism, as
 will be discussed shortly.

 If two resources are antagonistic, a diet biased toward mainly one or the other,
 i.e., specialization, would seem beneficial. Intermediate combinations would lead
 to greater antagonistic effects, requiring greater absolute food consumption to
 achieve the same per capita reproductive rate. Given certain availabilities of two
 resources, each of which would lead to a particular reproductive rate if consumed
 alone, the diet should mainly consist of the one resource that would lead to the
 greater reproductive rate. Inclusion of the other resource might depend on the
 ease with which it would be obtained and the magnitude of the antagonistic effect.
 The actual tradeoffs involved, and the time scale over which they are operative,
 are important questions, but outside the realm of this paper. Figure 2E shows one
 such set of consumption vectors for antagonistic resources. The broken line
 represents the proportion of the two resources that leads to maximal antagonism
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 COMPETITION AND PREDATION 371

 at particular growth rates. Above the broken line, in region 2, the diet should
 heavily favor R2; below it, in region 1, the diet should be biased toward R1.

 Switching resources.-The greater the antagonistic effect for two resources,
 the greater is the extent of bowing of the growth isoclines with respect to the
 origin. I define two resources as perfectly antagonistic (switching) if the growth
 isoclines form a right angle (fig. 2F). Switching resources are easily modeled. For

 the case with no mortality,

 N max [/i(R3)]. (3)
 Nidt j=1,k

 For switching resources, growth rate is determined solely by the availability of the

 one resource which leads to the largest reproductive rate.

 The broken line of figure 2F indicates the proportion of R1 and R2 at which both
 resources lead to the same reproductive rate. Above this line, in the area labeled
 2, only R2 would be consumed, because R2 leads to the higher growth rate. In
 region 1, only R1 would be consumed. These consumption vectors are shown. The
 consumer switches from specializing on one resource to specializing on the other
 resource as the availabilities of the two resources change. Using the terminology
 of Murdoch (1969), all antagonistic resources are consumed in a switching man-
 ner. For this paper I prefer to use switching to mean perfect switching, in which
 the diet in any small period of time is composed of only one or the other resource.

 Even in the absence of nutritional antagonism, selection for optimal foraging
 may lead to near perfect switching. Consider a species foraging for two resources
 which are nutritionally perfectly substitutable, but which occur in a spatially
 heterogeneous environment. If each resource occurs in a pure patch, a consumer
 will be able to forage for only one of the resources within any small period of time.
 An optimal forager might choose to forage in the patch with resource availability
 that led to the higher net reproductive rate. The net reproductive rate could
 include patch to patch differences in probabilities of mortality. When patches of

 this resource were depleted, it would switch to the patches of the other resource.

 Such behavior is embodied in the growth isoclines and consumption vectors given
 for switching resources. Foraging behavior approaching this and relevant theory
 has been reported by Murdoch (1969, 1971), Murdoch and Marks (1973), and

 Murdoch et al. (1975).
 Similarly, if different behavioral or physiological traits are required to forage for

 or process different resources, a species may respond to the resources in a
 switching manner. Heinrich (1976a, 1976b) has documented such switching be-
 havior (majoring and minoring) for individual bumblebees. The phenomenon of
 sequential utilization of sugars (diauxy) by bacteria is also a form of switching,
 caused by the need for different enzymes to use each sugar.

 Switching resources illustrate the interdependence of growth isoclines and
 consumption vectors. Specific rates of resource consumption lead to specific
 growth isoclines. Other consumption vectors would lead to other positions or
 shapes for growth isoclines. For instance, if resources were nutritionally perfectly
 substitutable, and were distributed in a heterogeneous way in the environment, an
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 372 THE AMERICAN NATURALIST

 organism that consumed them in proportion to their abundance (traveling from
 patch to patch to do so) would have a straight-line growth isocline. If such

 movement had a reproductive cost, the species' growth isocline would be always

 outside the growth isocline of a switching individual. As will be shown, such an
 individual would be at a competitive disadvantage with respect to the switcher.

 These categorizations of resources are offered as a starting point for research.

 Experimental determinations of the relationships between resource type and the
 consumption characteristics of various species are definitely needed.

 CONSUMER-RESOURCE INTERACTIONS

 A major purpose of this paper is to explore how resource type may influence
 interspecific interactions. I limit this discussion to interactions between no more

 than five consumers of two resources. It could be easily extended to include more
 resources and more consumers. Cases in which two consumers respond to the
 resources in the same way are considered first, then cases in which two resources

 are of one type to one species and of another type to a second species are
 considered, and finally cases in which three or more species compete for two
 resources are discussed.

 As the generalized equations offered at the beginning of this paper imply, four
 pieces of information are needed to predict the equilibrium outcome of inter-

 specific resource competition: (1) resource supply rates; (2) mortality rates; (3)
 consumption rates; and (4) growth responses. The growth response of each

 species is represented by its growth isoclines. The growth isocline at which

 reproductive rate is equal to mortality rate is the one at which dNldt = 0, and is
 called the zero net growth isocline, or ZNGI.

 For graphical purposes, I assume that the resource supply process, gj(Rj), is
 equable, sensu Stewart and Levin (1973). This implies that, in the absence of
 consumption,

 .dR1 _ al(OR - RI) and that dR2 = a2(oR2 - R2)
 dt a(R R) antht dt

 Here, OR1 and oR2 are the maximal amounts of resource 1 and 2 that can exist in
 the environment, analogous to a carrying capacity. I assume that a , = a2 a, i.e.,
 that the rate of return toward OR1 and oR2 is the same for both resources.

 Graphically this assumption is shown in figure 3. A given point in the resource

 plane, (OR1, oR2), represents the maximal possible amounts of R1 and R2 that can
 occur in the environment at steady state. It is called a resource supply point. If the
 environment were perturbed to levels of R1 andR2 greater or less than OR1 and OR2,
 respectively, it would tend to return toward OR1 and OR2. The rate of return would
 be proportional to the magnitude of the deviation from (OR1, oR2). Consider point
 A, which represents a particular resource supply point, (OR1, oR2). If the actual
 availabilities of these resources were at the point A', then the rate of supply of

 resource 1 would be dRIdt = a(OR, - R') and the rate of supply of resource 2
 would be dRldt = a(OR2 - R'). These are shown as vectors drawn with a broken
 line. The total resource supply vector is U a[(OR, - R,), (oR2 - R2)]. The
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 FIG. 3. -Resource supply function. For the graphical treatment presented in this paper, it

 is assumed that the rate of supply of a resource is proportional to the deviation of the ambient

 resource level, R, and R2, away from the maximal amounts of these resources in the
 environment, OR1 and OR2. The resource supply vector is thus a vector that points from the

 ambient resource point, A', (R1, R2), to the resource supply point, A, (OR,, oR2), with a
 magnitude proportional to the deviation. This vector is labeled U, and its two component
 parts, the supply rates of R1 and R2, are shown with broken arrows.

 magnitude of this vector is proportional to the deviation from the resource supply
 point. Because I assume that the supply rate constants of the two resources are
 identical, i.e., a1 = a2, supply vectors always point toward the supply point. Each

 point in the R1, R2 quarter plane can thus be considered to represent a unique
 resource supply point. Using this notation, it is possible to ascertain what re-

 source supply points lead to dominance or coexistence of consumers. As any
 given habitat has specific resource supply process, all such habitats are included in

 the R,, R2 quarter plane.
 The interactions between one consumer and two resources can now be con-

 sidered. All cases assume consumption vectors as in figure 2. For a consumer

 experiencing a given mortality rate, there will be a particular combination of
 availabilities of the resources at which a species has a reproductive rate equal to
 its mortality rate. These zero net growth isoclines (ZNGI) for three such cases are

 shown in figure 4. Any habitat which has a resource supply point, (d?1, 0R2), that
 falls inside the ZNGI will provide insufficient resources to maintain a stable

 population. Resource supply points which are outside the ZNGI lead to a positive
 population size for the consumer. Resources will be consumed in increasing
 quantities as the population grows. Eventually a population size will be reached at
 which total resource consumption by the population is equal to the resource
 supply rate, and at which mortality equals resource-dependent population growth

 (fig. 4). This steady state will be a point on the ZNGI at which the population
 consumption vector is opposite in direction, but equal in magnitude, to the supply
 vector.

 For any (OR1, oR2) outside the ZNGI, the resource equilibrium for essential
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 FIG. 4. -One species-two resource equilibrium. For each section of this figure, each point

 labeled with a nonprimed letter represents a supply point. Each primed point represents the

 equilibrium point for a species consuming these two resources. The vector pointing in the

 general direction of the origin is the total rate of consumption of the resources by the species,

 and the vector pointing toward the supply point is the supply vector. The equilibrium point

 always falls on the ZNGI, the isocline along which per capita reproductive rate equals per

 capita mortality rate.

 resources (fig. 4A) will occur at the point at which a line through (0R1, 0R2) and
 parallel to the consumption vector intersects the ZNGI. For a habitat with re-

 source supply point W, for instance, the equilibrium will occur at point W', at
 which point the consumption vector is opposite in direction from the supply
 vector. Population density will change until the total consumption rate equals the
 supply rate. Similarly, supply point X leads to an equilibrium at X'. Above the

 broken line, the species is limited by R1; below it, by R2. Supply points inside the
 ZNGI lead to extinction.

 For perfectly substitutable resources, with consumption proportional to abun-

 dance, the consumption vector points toward the origin. The equilibrium point

 occurs where a line running through the origin and (0R1, OR2) intersects the ZNGI.
 Figure 4B shows three such cases, for three different supply points.

 For switching resources, three regions of the resource plane (fig. 4C) must be

 considered. A supply point in region 1 leads to an equilibrium on the ZNGI at the

 point at which a line through (OR1, OR2), parallel to the R2 axis, intersects the ZNGI
 (points W and W'). The equilibrium point is similarly determined in region 3

 (points Z and Z'). Any (OR,, OR2) in region 2 leads to an equilibrium at the kink in
 the ZNGI. For supply points in this region, the consumer switches from one
 resource to the other, consuming the one resource which leads to higher growth

 rate. The long-term net effect is an average consumption vector that is equal in

 magnitude and opposite in direction to the supply vector from the kink in the
 ZNGI. For two points in region 2, X and Y, the two consumption vectors are
 shown, as are the supply vectors.

 Interspecific Competition

 This graphical resource theory is easily extended to two species competing for
 two resources. If the ZNGI of the two species do not touch or cross, no two
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 species equilibrium is possible, and one species should be competitively domi-

 nant, completely displacing the other from all habitats in which either species can

 survive (see fig. 6). Every point in the resource plane at which the ZNGI of two
 species touch or cross is a resource equilibrium point at which both species can

 potentially coexist. It is necessary to determine (1) if an equilibrium point is

 locally stable and (2) what set of resource supply points (OR,, OR2) could lead to
 that equilibrium point.

 For the general case of two species competing for two resources (fig. 5) in which

 the ZNGI do cross, let the equilibrium point be (Rt, R*). There are two distinct
 ways that the ZNGI and consumption vectors of two species may fall relative to

 each other (without regard to the labeling of the species) at the resource equilib-
 rium point, as inspection of figure 5A and B demonstrates. For both cases of figure

 5, the ZNGI of species A is more horizontal than the ZNGI of species B. In figure
 5A, the consumption vectors of species A and B are consistent with the assump-
 tions embodied in figure 2. In figure 5B the consumption vectors have been
 reversed.

 For figure 5A, the ZNGI relationship implies that, compared to species B, the
 growth rate of species A is limited more by R2, than by R 1. Comparably, it means

 that, compared to species A, the growth rate of species B is limited more by Rl
 than by R2. The consumption vectors of figure 5A mean that, compared to each
 other, species A consumes relatively more R2 and that species B consumes
 relatively more R1. Thus, for the case of figure 5A, each species consumes

 proportionately more of the resource that more limits its own growth rate. The

 linear stability analysis in the Appendix demonstrates that this case is locally

 stable no matter what class of resources is involved.
 The equilibrium point of figure 5B is locally unstable. The only difference

 between figure 5A and 5B is the change in the consumption vectors. At the

 resource equilibrium point of figure 5B, each species consumes relatively more of

 the resource which less limits its own growth rate. Compared to species B, species
 A is more limited by R2; but compared to species B, it consumes relatively more
 R1.

 As is demonstrated in the Appendix, there are two necessary conditions for a

 stable two-species equilibrium. These conditions apply to competition for any two
 resources, and may be considered a generalization of the criterion presented by
 Leon and Tumpson (1975) for perfectly substitutable and essential resources.

 These two conditions are stated in the rigorous language of partial derivatives in

 the Appendix. For a two-species-two-resource equilibrium point to be locally

 stable, it is necessary that the following conditions hold.
 CONDITION A. For two species to stably coexist on two resources, each

 species must, relative to the other species, consume proportionately more of the
 one resource which more limits its own growth rate.

 CONDITION B. The amounts of each resource consumed by individuals of each
 species may change only slightly in response to small changes in the availability of
 each resource.

 Given that an equilibrium point is stable, it is possible to ascertain what

 particular resource supply points will lead to the equilibrium, i.e., what set of (,R1,
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 FIG. 5.-Stable and unstable equilibrium points. For both parts of this figure, the two

 heavy lines through the equilibrium point, (R., Rf), are the zero net growth isoclines (ZNGI)
 for species A and species B. The vectors A and B are the consumption vectors for species A

 and B, and the vector U is the supply vector for the supply point, (OR,, OR2). For part (A) of
 this figure, the equilibrium point is locally stable (see text and Appendix for details). Any
 habitat with a supply point within the region bounded by the two broken lines will eventually

 lead to this equilibrium point. The vector equation describes the density of species A (N*) and
 species B (N*) at steady state. At steady state, the total consumption rate of R1 andR2 equals

 the supply rate. For part (B), the ZNGI of the two species are the same, but the consumption

 vectors are reversed. This equilibrium point is unstable. Any supply points within the region

 bounded by the broken lines would lead to one or the other species being competitively
 dominant, with the outcome dependent on initial conditions.

 oR2) will result in coexistence or dominance of one or the other species. For ease
 of mathematics, I will translate the origin to (R1, R*). To do this, let S1 = R, - R1
 and S2 = OR2 - R8. Let CA, and CA2 be the steady state per capita consumption
 rates of R1 and R2 for individuals of species A. Thus, CAJCAl is the slope of the

 consumption vector for species A. Let CB, and CB2 be similarly defined for species
 B. With N* and N* the steady-state population sizes for species A and B,
 respectively,

 a Si NA* CA - NB[ CB I 0
 LS2 I CA2 CBN2[ [01

 at equilibrium, where C1j is positive for all i, j. Solving these equations for N* > 0
 and NB > 0 for the case of figure 5A (and case 3 of fig. 6) gives

 CA2 > S 2 > CB2
 CA1 S1 CB1

 This is easily interpreted graphically. The resource supply points that lead to
 coexistence (i.e., to NA > 0 and NB > 0) must fall within the region bounded by the
 broken lines through (Rt, R*) on figure 5A. Each of these two broken lines goes
 through the equilibrium point and has the slope of the consumption vector of each

 species. Any resource supply points, (OR1, OR2), outside this region will lead to one
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 FIG. 6.-The four cases of resource competition. These four cases are directly analogous to
 the four cases of the Lotka-Volterra competition equations. The outcomes of competition are
 labeled consistently in all four parts of this figure: 1 = neither species able to survive for
 resource supply points in this region; 2 = only species A able to survive; 3 = species A
 competitively displaces species B; 4 stable coexistence of both species; 5 = species B
 competitively displaces species A; 6 = only species B able to survive. Case 1: Because the
 ZNGI (zero net growth isocline) of species A is inside that of species B, species A will always

 competitively displace species B. Case 2: Because the ZNGI of species B is always inside that
 of species A, species B will always win in competition with species A. Case 3: This
 equilibrium point is locally stable. Any resource supply points in region 4 will lead to both
 species stably coexisting at the resource equilibrium point. Case 4: This two-species resource
 equilibrium point is locally unstable. Any resource supply point in the region labeled "3 or 5"
 will eventually result in the competitive exclusion of either species A or B. The outcome of
 competition in this region depends on the starting conditions.

 or the other species being dominant at steady state. This analysis holds regardless
 of the resource type for which competition occurs. It is easily modified for any
 resource supply function besides that used in this paper. If an equilibrium point is
 stable, two species will coexist in a particular habitat only if the resource supply
 vector from the equilibrium point falls within the region defined by the consump-
 tion vectors of the two species.

 The four cases of resource competition.-Assuming that the ZNGI of two
 species cross or touch in at most one place (i.e., at one two-species equilibrium

 point), there are four distinct cases of two-species competition for two resources.
 These cases are directly analogous to the four cases of the Lotka-Volterra compe-
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 tition equations (Slobodkin 1961), and are shown in figure 6 using complementary
 resources. Species A will always competitively displace species B if the ZNGI of

 species A is always inside that of species B (case 1). Similarly, species B will
 always displace species A if the ZNGI of species B is always inside that of species

 A (case 2). For case 3, the ZNGI cross, and the consumption vectors are such that

 the equilibrium point is stable. For this case, there are resource supply regions for
 which species A is dominant (regions 2 and 3), a resource supply region (4) in

 which both species stably coexist, and resource supply regions (5 and 6) in which
 species B is dominant. For case 4, the resource equilibrium point is locally
 unstable. As shown, this happens because excess amounts of R2 are consumed by

 species B (which is relatively more limited by Ra), thus destabilizing the equilib-
 rium point. The region labeled "3 or 5" is not a region of stable coexistence.

 Resource supply points in this region will not lead to an equilibrium at the point of

 intersection of the ZNGI, but will lead to an equilibrium in which either species A
 or species B is dominant. The outcome of competition in this region depends on
 the starting conditions.

 In consuming excess quantities of R2, species B competitively displaces species

 A from a region of resource supply space in which both species could coexist if
 species B consumed the resources in the proportions shown in case 3. Such excess

 consumption may be called hoarding or luxury consumption. It may be an impor-
 tant strategy for competition. Hoarding, considered a form of interference com-
 petition, may be directly included in resource-based competition theory.

 Two species-two resources. -Figure 7 shows six different cases of competition
 for two resources. In all cases, the consumption vectors reflect the assumptions of

 figure 2. For essential resources (fig. 7A), habitats with (OR,, oR2) in region 1 lead
 to the extinction of both species. For habitats with supply points in region 2,
 species A will be able to maintain a stable population, but species B will not be
 able to do so. In region 3, species A will competitively displace species B, both
 species being limited by R1. In region 3', species A will again be dominant, even
 though species A is limited by R2 and species B by R1. Any supply points within
 region 4 will lead to stable coexistence of both species, as the application of the

 stability criterion easily demonstrates. In region 5' each species is limited by a
 different resource, but species B is dominant. Species B is dominant in region 5,

 for which habitats both species are limited by R2. Only species B can survive in
 region 6.

 A similar diagram for hemi-essential resources (fig. 7B) uses this same notation

 to label the regions of dominance by one species or coexistence. Again, note that
 both species should stably coexist in the region of resource space labeled 4, with
 species A dominant in regions 2 and 3, and species B dominant in regions 5 and 6.

 Neither species can live in environments with supply points that fall in region 1.
 Four cases are shown for substitutable resources (figs. 7C, 7D, 7E, and 7F). In

 three of these four cases, the resource plane is divided into regions in which one
 species is dominant, both species coexist, or neither species can maintain stable

 populations, again labeled as before. However, the assumption that perfectly
 substitutable resources are consumed in direct proportion to their abundance
 causes the resource consumption vectors of both species to fall exactly on top of
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 FIG. 7.-Two species-two resource competition. The outcomes of competition between
 two species competing for two resources are shown for six resource types. The unbroken
 lines labeled A and B are the ZNGI for these two species. For all parts of this figure, the

 outcomes of competition are labeled as in fig. 6, with the addition of 3' = species A
 competitively displaces species B even though both are limited by different resources, and 5'

 = species B competitively displaces species A even though each species is limited by a

 different resource. The broken lines labeled A and B are lines through the equilibrium point

 with the same slope as the consumption vectors of species A and B.

 each other. This means that coexistence occurs only on the infinitely thin line that
 divides region 3 from region 5 of figure 7C. Clearly, any factors that would cause
 the diets of the two species to deviate could lead to a region of coexistence. Such
 differences in foraging strategies could be caused by spatial structure, which could

 open up a region of coexistence (figs. 7E, 7F).
 Resource gradients. -Natural habitats often differ in the availability of various

 resources. A convenient way to summarize such differences is to order habitats
 according to the relative abundance of the two resources. Such an ordering results
 in what has been termed a resource gradient. A resource gradient may actually
 exist in a continuous manner in nature, such as the gradients in soil moisture and
 nutrient availability that occur on slopes, or it may be a convenient way to
 summarize the heterogeneity of an area, i.e., the relative resource supply that
 occurs in an area. Whittaker (1967) has discussed the pattern of species distri-
 butions along some natural gradients. A transect from point x to point y on figures
 7A, 7B, 7D, 7E, and 7F gives a resource ratio gradient along which the distribu-

 tion of species A and species B is qualitatively similar to that of figure 8A. For
 perfectly substitutable resources (fig. 7C), the distribution along a gradient would
 be as shown in figure 8B.
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 FIG. 8.-Competition along a resource gradient. A, The approximate relative abundance of
 species A and B along a gradient from point x to point y of fig. 7A, B, D, E, and F, i. e., for two
 species with a stable equilibrium when competing for essential, hemi-essential, complemen-
 tary, antagonistic, and switching resources. B, Similar diagram for perfectly substitutable

 resources, as shown in fig. 7C. C, For the cases shown in fig. 9A, 9B. D, For fig. 9C, a case of
 five species competing for two essential resources.

 Mixed resource competition. -So far I have only considered competition in
 which two species compete for the same types of resources. It is easy to imagine
 cases for which two species would respond to the same resources in different
 ways. I will present a few of the possibilities. Consider two resources which for
 species A are perfectly substitutable, but which are complementary for species B.
 There are several ways these curves could fall. One such way is shown (fig. 9B).
 Note the pattern of species dominance. There is a region in which species A is
 dominant, followed by a region of coexistence, a region of dominance by species
 B, another region of coexistence, and another region in which species A is
 dominant. Figure 9B shows a case in which two resources are perfectly substitut-

 able for species B but are switching for species A. As already discussed, this might
 occur if the two species foraged differently for nutritionally substitutable re-
 sources. A pattern similar to that of figure 9A occurs in this case. A region of
 resource supply in which species A is dominant is followed by a region of

This content downloaded from 
������������140.112.52.136 on Mon, 06 Dec 2021 08:42:52 UTC������������� 

All use subject to https://about.jstor.org/terms



 COMPETITION AND PREDATION 381

 -B 4

 2

 2 4

 -~~ ,@4 ~ ABCDE ~-B

 3 1 6C6 A 5

 RI R
 R2~~~~~~~

 '77

 2 34 B 66 A

 R1~~~~~~~~~~~~~~~~--

 FIG. 9-A, Two stable two-species equilibria occur for this case. The resources are

 perfectly substitutable for species A and complementary for species B. Regions are labeled as
 in fig. 6. B, For species A the resources are switching; for species B, perfectly substitutable.
 Both equilibria are stable. Regions are labeled as in fig. 6. C, Five species competing for

 essential resources. The four stable, two-species equilibria are marked with dots. Regions of
 coexistence are labeled, for example, with "C+D" meaning that resource supply points in
 this region lead to the stable coexistence of species C and D. The circles (labeled 1, 2, and 3)
 represent spatial heterogeneity around the habitat average resource supply point. See text for

 more details. D, Three species competition for switching resources. The two-species equilib-
 rium point marked with a dot is stable. Regions are labeled as in Fig. 6. E, The resources are

 switching for species A and B and are perfectly substitutable for species C. In region 7,
 species A and C stably coexist; in region 8, species C displaces species A and B; in region 9,
 species B and C stably coexist. The other regions are labeled as in fig. 6.

 coexistence, a region of dominance by species B, a second region of coexistence,
 and a second region of dominance by species A. A resource gradient from point x
 to pointy of figure 9B would give a distributional pattern as shown in figure 8C. A
 similar pattern occurs for the case of figure 9A. In both cases there are two,
 two-species equilibrium points. Multiple two-species equilibrium points may also
 occur when species compete for antagonistic, complementary, and hemi-essential
 resources.

 Multi-species competition. -The graphical approach just presented is readily
 applied to multi-species competition for two resources. Figure 9C shows five
 species competing for two essential resources. The species rank in ability to grow
 under limitation by R1 with A > B > C > D > E, and in ability to grow under
 limitation by R2 with E > D > C > B > A, where ">" is read "is a superior
 competitor to." The ZNGI for these five species cross in 10 places, of which the
 four stable, two-species equilibrium points are shown with dots. If any number of
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 species competing for essential resources are so ranked, there will be regions in
 the resource supply plane in which various pairs of species will coexist (fig. 9C).
 The approximate distribution of these five species along a resource gradient from
 point x to pointy of figure 9C is shown in figure 8D. This illustrates that these five
 species could coexist in a habitat with the range of relative resource availabilities
 which occurs along the resource gradient of figure 8D. The effect of spatial
 heterogeneity on species composition in a community is better illustrated by using
 both the average rate of nutrient supply (the average resource supply point) and
 spatial variance in resource supply within a habitat. For instance, the number 3 of
 figure 9C might show the average resource supply point for a habitat, and the
 circle around the number 3 could include the range of microhabitat to microhabitat
 variation of the resource supply point in that habitat. The closed curve (assumed

 to be a circle) showing the spatial variation in resource supply in habitat 3 includes
 regions in which species B and C can maintain stable populations (fig. 9C). The

 same amount of spatial heterogeneity in the more resource-poor habitat 2 would
 include regions in which species B, C and D could maintain stable populations. All
 five species could co-occur in the equally heterogeneous but even more resource-

 poor habitat 1 (fig. 9C). This suggests that a given amount of spatial heterogeneity
 will lead to maximal species diversity in moderately resource-poor habitats. Thus,
 a graph of species diversity against resource richness would give a humped curve.

 A case of three-species competition for switching resources is shown in figure
 9D. Of the three points of intersection of the ZNGI, only one is a stable, two-

 species equilibrium point. Species A and B coexist at this equilibrium point,

 reducing R, and R2 to equilibrium levels below that required for the existence of
 species C. Species A will be dominant in regions 2 and 3, both species will coexist
 in region 4, species B will be dominant in regions 5 and 6, and no species will be

 able to exist in region 1. Species C is excluded from all habitats.
 This raises a question related to plant-pollinator community structure. No

 matter how the ZNGI are arranged for three or more species consuming two

 switching resources (excluding the unlikely case of exact coincidence of the
 ZNGI), there is only one stable, two-species equilibrium point. This equilibrium
 point allows the coexistence of only two of these species. All others are compet-
 itively excluded from all regions of the R1, R2 resource plane. This means that, no
 matter how spatially heterogeneous the distribution of numerous resources might
 be, there can be no more species responding to them in a switching manner than
 there are resources. Thus, there should be a one-to-one relationship between the
 number of co-occurring species of switching pollinators and the seasonal average
 number of distinct, vector-pollinated species in flower at any given time.

 This does not hold for species which do not respond to resources in a switching
 manner. In figure 9E, species A and B respond to R 1 and R2 in a switching manner,
 but the resources are perfectly substitutable for species C. Species A will be

 dominant in regions 2 and 3, species B will be dominant in regions 5 and 6, and
 species C will be dominant in region 8. Species A and C will coexist in region 7,
 and species B and C will coexist in region 9. For a third species, like species C in
 this example, to be able to invade a community in which resources are consumed
 in a switching manner, the third species must have a range of resource avail-

 abilities for which it is a superior competitor to both of the switching species.
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 A comparison of competition for essential resources with competition for
 switching resources demonstrates some of the qualitative effects of resource class
 on competition. For a group of species to be able to coexist along a resource
 gradient when competing for essential resources, they must be ranked in compet-
 itive ability for one resource in reverse order of their competitive ranking for the
 second resource, as shown in figure 8D. However, such a ranking will lead to the
 coexistence of only two species if they are competing for switching resources. The
 criterion for coexistence of species on an essential resource gradient is not
 sufficient to predict coexistence of species competing along a gradient of com-
 plementary, antagonistic, or hemi-essential resources. Thus, there are qualitative
 differences in competition for different classes of resources. The class of resource
 for which competition occurs determines the criteria for coexistence along a
 resource gradient.

 APPLICABILITY OF THEORY

 I am familiar with few studies of interspecific interaction which were done in a
 way that would allow them to be directly analyzed using the methods described
 here. Droop (1974) and Rhee (1978) demonstrated that plant nutrients are
 noninteractive essential resources, but did not use this information to predict the
 outcome of interspecific competition.

 I (Tilman 1977) reported the results of competition experiments between two
 freshwater algae under conditions in which phosphate or silicate should have been
 the limiting factors, comparing the results with predictions based on nutrient
 utilization information reported by Tilman and Kilham (1976). Figure 10 presents
 these results in the notation developed in this paper. The ZNGI shown are for a
 mortality rate of 0.25 day-', approximately 30% of the maximal growth rate for
 both species. Competition experiments were performed for several (0R1, OR2) at
 this mortality rate. The (OR,, oR2) which led to dominance by Asterionella are
 shown with a star, those that led to dominance by Cyclotella are shown with a
 diamond, and those that led to coexistence are shown with a dot. Note the close
 agreement of predictions and results. Resource competition theory was used to
 predict relative abundance of these two species in Lake Michigan. In so doing, it
 was necessary to assume that both species experienced the same mortality rates,
 and that the ambient (measured) concentrations of phosphate and silicate were
 near steady state. Even with these restrictive assumptions, over 70% of the
 variance in the relative abundance of these two species along a natural resource
 gradient in Lake Michigan was explained by the model (Tilman 1977).

 Studies of the response of freshwater algae to various nutrient additions also
 seem to be qualitatively consistent with a theory of competition for essential
 resources. Particular nutrient additions seem to favor certain species (see, for
 instance, Menzel et al. 1963; Schindler 1977). Stoermer et al. (1978) demonstrated
 a close agreement between those species that have a growth response to additions
 of nitrogen or phosphorus and those that tend to become dominant in areas with
 anthropogenic additions of these nutrients.

 Levin et al. (1977) used a mechanistic model to explore the interactions of
 limiting resources (sugars), consumers (different strains of Escherichia coli), and a
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 FIG. 10.-Predicted and observed outcomes of competition for phosphate and silicate by
 Asterionella formosa and Cyclotella meneghiniana at a mortality (flow) rate of 0.25 day-'.
 The two-species equilibrium point occurs at 1.9 AtM SiO2 and 0.2 AtM P04. The consumption
 vectors (from Tilman 1977) have a slope (Si/P) of 87 for Asterionella and of 6.2 for Cyclotella.
 For resource supply points in the region labeled 3, Asterionella should be dominant. For
 resupply points in region 4, both species should coexist. Cyclotella should be dominant in
 region 5. Experiments (Tilman 1977) for which Asterionella was dominant are shown with an

 asterisk; those for which Cyclotella was dominant are shown with a diamond, and those for

 which both species coexisted are shown with a dot. A supply point off the graph (9.8 AtM P04,
 15 AtM SiO2) was dominated by Cyclotella, as predicted. For this analysis, the observed
 maximal growth rates, reported in Tilman and Kilham (1976), were used even though the
 maximal rates under P04 and SiO2 limitation for each species differed. The boundaries shown
 differ slightly from those of Tilman (1977) because of this difference in maximal rates.

 predator (the bacteriophage T2). Although their model predicted diverging oscilla-
 tions for the case of one resource, one consumer, and one predator, they observed
 a stable equilibrium. One resource, two consumers, and one predator stably
 coexisted as predicted by their model. In terms of the classification of resources
 presented here, the model that Levin et al. (1977) developed assumed that the
 resources used by E. coli were perfectly substitutable, a reasonable assumption

 for sugars.
 Platt and Weis (1977) studied a guild of fugitive prairie plants, for which they

 believed that soil moisture and open (disturbed) sites were two limiting resources.
 Their graphs of the soil moisture and disturbance requirements of several species
 are comparable to zero net growth isoclines. If Platt and Weis had expressed the
 disturbance requirements of the prairie plants as an absolute requirement for open
 space instead of the inverse (distance between disturbances), their curves would
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 have been directly comparable to the ZNGI for essential resources. This suggests

 that space may be considered an essential resource. With estimates of the supply
 rates and consumption rates of these resources, it would be possible to predict the

 abundances of various fugitive species along the natural gradients in soil moisture

 and disturbance rate that Platt and Weis observed. This would allow an equilib-

 rium analysis of competition in disturbed habitats.

 Competition for nutrients may be an important process in terrestrial plant

 communities. Numerous studies have found a correlation between soil nutrients
 and species composition (e.g., Zedler and Zedler 1969; Milton 1940; Ellis 1971;
 Beadle 1966). For instance, Zedler and Zedler (1969) studied a 1.5 m elevational

 gradient in an old field in Wisconsin. This slight elevational change correlated

 significantly negatively with a soil moisture gradient (r = -.60; n = 320; P < .01).
 Soil moisture was significantly positively correlated with phosphorus (r = + . 16; n

 - 320; P < .01) and significantly negatively correlated with soil potassium (r =

 .13; n = 320; P < .01). Of the eight major species on this gradient, three were
 absent at one end of the gradient and increased along the gradient, three other

 species were at peak density when the first three species were absent and de-

 creased in density along the gradient, and two species had peak density near the
 middle of the gradient. Not one of the species was dominant at both ends of the
 gradient and rare in the middle, an observation that is consistent with the predic-

 tions of a model of competition for two essential resources. Whittaker (1967)
 reported that the distribution of plants along elevational gradients has a similar

 pattern. Although these observations are consistent with the hypothesis that

 resource competition may be an important factor determining the structure of this
 plant community, this hypothesis has not yet been experimentally tested.

 At any given point along a resource gradient, plant species which are coexisting
 should be limited by different nutrients. If nutrients are essential resources and if
 resource competition is occurring, the addition of a given nutrient should favor the
 species limited by it. Plants which increase in density after the addition of one
 nutrient in a particular locality should not increase with the addition of any other
 nutrient. Willis (1963) fertilized the vegetation of the sand dunes of Braunton

 Burrows with only nitrogen (N), only potassium (K), only phosphorus (P), or
 with all nutrients except N, P, or K. Of the 10 plant species that were detectable
 above trace levels, four increased relative to controls when N was added, one
 when P was added, and one when K was added. None of these six species
 increased in response to more than one of the three single nutrient additions
 during the 2-yr period of the experiment.

 Testability of Resource Theory

 A major advantage of resource-based theory over classical theory is the testa-
 bility of the predictions made by resource-based theory. Resource theory can
 make qualitative and quantitative predictions from both lower to higher and from

 higher to lower levels of organization. For qualitative predictions, consider a
 terrestrial plant community for which it would be a straightforward, if tedious,
 matter to collect the following four pieces of information: (1) the resource re-
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 quirements (growth responses) of each major species for each of the potentially
 limiting resources; (2) the outcome of competition experiments between the major
 species performed under conditions of controlled supply of various resources; (3)
 the distribution in the field of these major species in relation to the distribution of
 the potentially limiting resources; and (4) the effect on the abundance of these
 species in the field of additions of various resources or combinations of resources.
 The first piece of information could be used to predict the next three, providing
 three opportunities to falsify the hypothesis of the importance of competition for
 resources. Similarly, any one of the four pieces of information necessarily places
 constraints on the other three if the theory is correct. Similar multiple predictions
 are made by resource-based models for any class of resource. Resource-based
 theory is robust not only in providing multiple chances for falsification, but also in
 making predictions both from lower level to higher level phenomena, and from
 higher level to lower level phenomena. Quantitative predictions can also easily be
 made. Again the mechanistic element of the theory allows prediction of several
 measurable items from a small data base. For instance, the information collected
 for item 1 above can be used to predict the population dynamics of particular
 species and the absolute abundances of particular resources under conditions in
 which the nutrient supply process is known, such as it would be in laboratory
 competition experiments.

 As I hope that this paper has demonstrated, attempts to build mechanistic,
 resource-based theory may prove more fruitful if different resource classes are
 considered. For plants consuming inorganic elements, a model of competition
 based on essential resources may be most appropriate. For herbivores, resources
 may prove to be hemi-essential or substitutable. If they are substitutable, argu-
 ment by analogy with livestock nutrition studies indicates that the resources of
 herbivores are likely to be complementary, in the absence of either synergistic
 effects of secondary compounds or spatial structure. The resources of carnivores
 are likely to be perfectly substitutable in unstructured environments, but an-
 tagonistic or switching in spatially or temporally heterogeneous environments.

 These differences in the category of resource for which competition occurs can
 greatly influence the interactions between species, and thus should be included
 explicitly in models of resource competition. The question of species packing (see,
 for instance, MacArthur and Levins 1964; MacArthur 1969, 1970; May 1973;
 Yoshiyama and Roughgarden 1977) is often phrased in terms of competition for
 resources which may be ranked along a "resource gradient." The resource gra-
 dient of the species packing literature is different than that of this paper. The
 former is a convenient way to summarize all the resources available in a particular
 environment; the latter a way to summarize all the relative availabilities of two
 resources in a series of microhabitats. However, whether explicitly or implicitly,
 the species packing models make an assumption about the class of resource for
 which competition occurs. In all the work done to date, the resources have been
 assumed to be perfectly substitutable for each other. If the resources were not
 perfectly substitutable, the definition of the competition coefficient, alpha, would
 have to be changed, because the alpha derivable from resource-based models
 depends on the type of resource for which competition occurs.
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 In terms of the resource gradients presented in this paper, it can be seen (figs.
 8 and 9) that resource type determines the patterns of species dominance and
 coexistence that can occur. For instance, with essential resources, a species can
 only be dominant at one point on a resource gradient; whereas with substitutable
 resources, a species may be dominant at both ends, and absent in the middle of a

 gradient. (cf. figs. 8C and 8D).
 Although in this paper I have mostly discussed cases in which resources are

 consumed as hypothesized in figure 2 and are supplied in a equable mode, the
 method of analysis is not restricted to these cases. The technique presented allows
 prediction of the outcome of consumer-resource interaction even if the growth
 functions, resource supply functions and resource consumption functions are
 unknown. As figures 5 and 6 illustrate, it is only necessary to know (1) the position
 of the ZNGI for each species, (2) the steady-state consumption characteristics of
 each species, and (3) the steady-state supply rates of each resource. These supply

 rates give the vector U of figure 5. Applying the criteria for stability to these three
 pieces of information, it is possible to determine in which habitats given species
 should be dominant or coexist with other species.

 It is possible to imagine many shapes for resource growth isoclines other than
 those shown in this paper, including closed curves caused by inhibition of high
 levels of a resource (Maguire 1973). I have presented and discussed the classes of
 essential, hemi-essential, and substitutable resources, and the subclasses of sub-
 stitutable (complementary, perfectly substitutable, antagonistic, and switching)
 because I believe that they are of the greatest ecological significance. Much
 further work needs to be done to determine the extent to which organisms of
 Different trophic status can be categorized as to resource class, and to determine
 iow well such information can predict the outcome of consumer-resource in-
 eractions.

 SUMMARY

 The growth response of a population to the resources in a particular environ-
 inent is used to classify pairs of resources as being either (1) essential, (2)
 hemi-essential, (3) complementary, (4) perfectly substitutable, (5) antagonistic, or
 (6) switching. Although nutrition is one important factor determining resource
 type, the growth response of a population to resources also depends on the
 interaction between a species' foraging methods and the spatial distribution of the
 resources. For example, two resources which are nutritionally perfectly substitut-
 able may be operationally switching, antagonistic, or complementary because of
 spatial heterogeneity.

 A graphical, equilibrium theory of resource competition allows prediction of the
 outcome of interactions between several consumers for the various classes of
 resources. The technique requires information on (1) resource type (growth iso-
 clines), (2) resource preference, (3) resource supply processes, and (4) mortality
 rates for all species. For all resource types, the major criterion for stable coexis-
 tence is that each species consume relatively more of the one resource which more
 limits its own growth rate.
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 The patterns of species dominance and coexistence in a community are shown
 to depend on the types of resources for which competition occurs. For instance, it
 is theoretically possible for an unlimited number of species competing for essential
 resources to stably coexist in a spatially heterogeneous environment, but only two
 species competing for two switching resources may stably coexist in an equally
 heterogeneous environment. However, the latter community is susceptible to
 invasion by other species which respond to these same resources in a non-
 switching manner.
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 APPENDIX

 This Appendix explores the local stability characteristics of the two-species equilibrium
 point which can occur when two species compete for two resources. If such an equilibrium
 point is found to be locally stable, both species should return to the equilibrium after small
 perturbations in any of the variables. In this case, the variables are the densities of both
 species and the availabilities of both resources. Linear stability analysis is now a common
 technique in mathematical ecology, and I refer interested readers to May (1973) for an
 elaboration of its assumptions, principles, and validity.

 For an equilibrium point to be locally stable, the eigenvalues of the Jacobian matrix, J,
 must all have negative real parts. The Jacobian is a matrix of the partial derivatives of the
 rates of change of variables, evaluated at equilibrium. For two species competing for two
 resources, it is a 4 x 4 matrix. For notational convenience, I will use uij = (aNj/&Nj)*, vij =
 (ANj1/Rj)*, wij = -(MGRj/Nj)*, and xij = -(Rj1/0Rj)*, where the asterisk means the
 expression is to be evaluated at equilibrium. For all the models of resource competition
 presented in this paper, uij = 0 for all icj. For all cases, the Jacobian matrix has the general
 form

 0 0 v1l V12

 J = 0 V 21 V22
 [W11 -W12 -X11 -X12

 _W21 -W22 -X21 -X22

 The eigenvalues, X, are determined by the characteristic equation, det(J - XI) = 0. Letting,
 for notational convenience, q1 = w1lv1l + W12V21, q2 = Wlv12 + W12V22, q3 = wv1V12 + w12v22,
 and q4 = W21V12 + W22V22, the characteristic equation for this matrix is

 X4 + (x11 + x22)X3 + (q1 + q4 + x11x22 -X12X2 JX

 + (xllq4 + x22q, - X12q3 - X2lq2)X + (qlq4 - q2q3) = 0-
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 This characteristic equation has the general form X4 + a X3 + a2X2 + a3X + a4 = 0. The
 Rough-Hurwitz criteria for stability with such a characteristic equation (see May 1973) are
 (1) a1 > 0; (2) a3 > 0; (3) a4 > 0; and (4) ala2a3 - a2a4 - a2 > 0.

 I will first present a general model, and then discuss specific cases. The general model
 which will be considered is derived from the one presented earlier in the main text. It is
 explicitly a model of competition for two resources which are resupplied as shown in figure
 3. The form off and hi determines the type of resource for each species.

 dNi = NtLfi(Rl, R2) - mi, for i = 1, 2,
 dt

 and dR = a(oRj - R3) - Nihij(Rl, R2)f (Rl, R2), forj = 1, 2.

 Terms are defined as in the main text of this paper. For notational convenience, let the
 following partial derivatives, all evaluated at equilibrium (*), be represented as follows:

 <fl)=Pi; (Of) 2; Uf ?) p3; (f2 \ 4;
 2) ~ ~ ~ ~ ~~~d2)=J;

 ____I (Ohl _ (O1 Oh-G __
 and I GI; = G2; G3; (R, G4;

 1-) = G5; = G6; ) = G; G8

 Note that (Ji)* = mi and let (h,1)* = c1; (h12)* = c2; (h21)* = c3; and (h22)* = C4.
 For all cases to be considered in this Appendix, P1, P2, P3, and P4 a 0, i.e., a small

 increase in the availability of either R1 or R2 will not lead to a decreased growth rate for
 either of the species. Similarly, c1, C2, C3, and C4 EB: 0, i.e., the competing species do not
 release or create resources. Also, G1, G3, G5, and G7 - 0, i.e., the per capita consumption
 rate of a particular resource does not decrease if that resource is slightly increased. And G2,
 G4, G6, and G8 < 0, i.e., the per capita consumption rate of a particular resource does not
 increase if the other resource is slightly increased. Note that a, ml, M 2, N*, N* > 0. The
 Jacobian matrix for this model contains the following elements:

 vil = N*P1, V12 = N*P2,
 V21 = N'*P3, V22 = N*P4,

 Wil = clm, W12 = C3M2,

 W1= c2ml, W22 = C4M2,

 xII =a + N* (GamI + c1Pj) + N* (G5m2 + c3P3),

 X1'2 =N (G2m1 + cIP2) + N2* (G6m2 + c3P4),

 X21 =N* (G4m1 + cAP1) + N* (G8m2 + c4P3),

 X22= a + N* (G3m1 + c2P2) + N>* (G7m2 + c4P4).

 Given these coefficients it is a straightforward, (but tedious) algebraic process to deter-
 mine under what conditions each of the four stability criteria will be met. These will be
 considered in order.

 Criterion 1: a 1 > O.-As stated earlier, a 1 = X1I + X22. Thus, for criterion I to hold, x11 +
 x22 > 0. This will be the case if

 2a + N* (G m1 + G3mI + c PA + c2P2) + N* (G-,m, + G7m2 + c3P3 + c4PA) > O.
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 Because all the terms in the left-hand side of this inequality are greater than or equal to
 zero, the inequality always holds. Thus, criterion 1 is met for all cases considered.

 Criterion 2: a3 > O.-After some algebra, the value for a3 is found to be

 a3 = a[mN* (cP, + c2P2) + m2Nf (c3P3 + c4P4)]
 + (mI + m2) N*jNj (cIc4 - c2c3) (P1P4 - P2P3)

 + m1N2* [cl (P1G3 - P2G4) + c2 (P2G1 - P1G2)]

 + mIm2 NNjN* [cl (P1G7 - P2G8) + c2 (P2G5 - PIG6)

 + c3 (P3G3 - P4G4) + c4 (P4G1 - P3G2)]

 + m2N2* [c3 (P3G7 - P4G8) + c4 (P4G5 - P3G6)].

 Consider the last three terms of a3. Gb> O forb = 1,3,5,7 and Gd < 0 ford = 2, 4, 6, 8; Pi
 > 0 for all i. Each of the terms of the form (PaGb - PCG(I) has b as an odd number and d as
 an even number. These terms are thus positive. The first term in the expression for a3 is
 always positive. Thus, a3 will be greater than zero only if (ml + M2) N*N* (P1P4 - P2P3)
 (c1c4 - C2C3) > 0. Because m 1, M2, N*, and Nj > 0, this simplifies to (P1P4 - P2P3) (clc4-
 C2C3) > 0. Both factors must be either positive or both negative for this inequality to hold.
 In terms of the original variables, for stability to occur, criterion 2 requires either

 I (0f1/RI)* > (afaRl) and hll > h*
 (0f1/0R2)* (0f2/0RX)* h* h*

 or (0f1/0R2)* (f2/0R2)* and 12 > -22
 (0fj1/Rl)* (0f2/0Rl)* h*, h*

 These conditions are easily interpreted biologically. If condition I holds, the growth rate of
 species 1, relative to the growth rate of species 2, is more limited by resource 1 than by
 resource 2, and species 1, relative to species 2, consumes proportionately more of resource
 1. If condition II holds, the growth rate of species 1, relative to the growth of species 2, is
 more limited by resource 2 than by resource 1; and species 1, relative to species 2,
 consumes proportionately more of resource 2. Criterion 2 thus has the following as a
 necessary condition for the stable coexistence of two species utilizing two resources.

 CONDITION A. For two species to stably coexist on two resources, each species, relative
 to the other, must consume proportionately more of the one resource which more limits its
 own growth rate.

 This is shown in figure 5. For figure 5A, the growth isoclines and consumption vectors
 are such that, assuming nearby growth isoclines are approximately parallel to the ones
 shown, species A is more limited by R2, compared to species B, and species A consumes
 relatively more R than R1, compared to species B. The case of figure 5A meets a necessary
 condition for stability. The case of figure 5B does not. The reversal of the consumption
 vectors from figure 5A means that each species, compared to the other, consumes propor-
 tionately more of the resource which less limits its own growth rate. This equilibrium must
 be unstable.

 Criterion 3: a4 > O.-From the characteristic equation derived earlier, a4 = qlq4 - q2q2.
 Substituting in the variables for v and w gives a4 = m 1m2 NN2 (PP4 - P2P3) (C IC4 - C2C3).
 Clearly for a4 > 0, it is sufficient that criterion 2 hold. For the models considered in this
 paper, criterion 2 and criterion 3 both require that condition A be met before a stable
 equilibrium is possible.

 Criterion 4: ala2a3 - a2la4 - a2 > O. -This criterion is algebraicly the most cumbersome.
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 If expanded in terms of the general variables of the characteristic equation (i.e., q1 and xjj),
 it reduces to:

 (q 1 -q4) x22

 + q2q3 (2x11x22 - 2x,2x21 ? xl1 + x.2 - . 1' ? <2)

 ? (q2x21 + q3X12) (X22 - x11) (q1 - q4)

 ? q1 (x1X22 ? x22 - X11X12X21X22 - X12X21X22)

 + q2 (X11X12X21 + X12X21X22 - -Xx11X21X2)

 ? q3 (X12X21 X 2 + X21X22x2X2- - X11x21X22)

 + q4 (x21x22 + x 21x2 -x1x12x21 - x11x12x21x22) > 0.

 After substituting in the variables represented by qj and xij, the fully expanded form of this
 inequality occupies several pages. Some of the terms cancel. Others can be matched such
 that, given that condition A holds, a negative term is paired with a positive term of greater
 absolute value. However, I could not show the inequality to hold unless I added one more
 restriction: that the m1Gj of x1i, x12, x21, x22 are all about zero, i.e., that Gj 0 for allJ.
 Because G = (Oh/IR)*, this requires, for a given species, that the consumption vectors
 near an equilibrium point (as in fig. 5) be almost parallel to the consumption vectors at the
 equilibrium point. If Gj = 0 for all j, criterion 4 always holds if condition A is met.
 However, if Gj 74 0 for someJ, criterion 4 requires that condition B be met in addition to
 condition A.

 CONDITION B. The amounts of each resource consumed by individuals of each species
 may change only slightly in response to small changes in the availability of each resource.

 Condition A is an exact statement of one necessary condition for stability. Condition B is
 a qualitative statement of a second condition which, if also met, will assure local stability.
 A restriction less rigorous than that of condition B may also allow stability, but I could not
 uncover it in the pages of algebra associated with criterion 4.

 Condition B is always met for all of the cases considered in this paper, unless an
 equilibrium point occurs at the switching point for antagonistic resources. For both essen-
 tial resources and for perfectly switching resources (but not at the switching point),
 consumption vectors in the vicinity of an equilibrium point will be exactly parallel, assuring
 that Gj 0. For the other cases, the consumption vectors change only slightly in response
 to changes in R, and R2. Thus, of the two conditions, condition A is the more restrictive, at
 least for the cases considered in this paper.
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