
CHAPTER	2
How	to	Construct	a	Model

Chapter	Goals:
•	To	describe	the	steps	involved	in	developing	a	model
•	To	derive	equations	that	describe	the	dynamics	of	a	biological	phenomenon

Chapter	Concepts:
•	Discrete-time	model
•	Continuous-time	model
•	Recursion	equations
•	Differential	equations
•	Life-cycle	diagrams
•	Flow	diagrams
•	Mass	action

2.1	Introduction

If	you	have	seen	mathematical	models	but	never	constructed	one,	 it	may	seem	like	an
overwhelming	task.	Where	do	you	start?	What	is	the	goal?	How	do	you	know	whether
the	model	makes	sense?	This	chapter	outlines	the	typical	process	of	modeling	and	gives
helpful	 hints	 and	 suggestions	 to	 break	 down	 the	 overwhelming	 task	 into	manageable
bits.	The	most	important	piece	of	advice	is	to	start.	Start	thinking	about	problems	that
puzzle	 you.	Grab	 a	 piece	 of	 paper	 and	 start	 drawing	 a	 flow	 diagram	 illustrating	 the
various	 processes	 at	 work.	 The	 biggest	 hurdle	 preventing	 most	 biologists	 from
modeling	 is	 the	 paralysis	 one	 feels	 in	 the	 face	 of	mathematics;	most	 of	 the	 technical
problems	that	pop	up	along	the	way	can	be	surmounted	or	sidestepped	(at	the	very	least
by	simulation).	You	will	certainly	make	mistakes	(we	all	do),	but	there	are	telltale	signs
of	 mistakes,	 and	 they	 can	 be	 corrected.	 Over	 time,	 you	 will	 learn	 more	 tools	 and
techniques	that	will	allow	you	to	avoid	pitfalls	and	to	get	further	with	the	problems	that
interest	you.	Your	 intuition	will	develop	 to	help	you	“see”	when	 something	 is	wrong
with	your	model	and	to	help	you	interpret	your	results.

Models	can	describe	any	biological	phenomenon.	In	the	core	of	this	book,	we	focus
on	 dynamical	 models,	 which	 describe	 how	 a	 system	 changes	 over	 time.	 Dynamical
models	are	very	common	in	biology	as	they	provide	insight	into	how	various	forces	act



to	 change	 a	 cell,	 an	 organism,	 a	 population,	 or	 an	 assemblage	 of	 species.	 Within
dynamical	models,	 two	broad	 classes	 are	distinguished:	 deterministic	 and	 stochastic.
“Deterministic”	 is	 shorthand	 for	 the	 assumption	 that	 the	 future	 is	 entirely	 predicted
(determined)	 by	 the	model.	“Stochastic”	 is	 shorthand	 for	 the	 assumption	 that	 random
(stochastic)	events	affect	the	biological	system,	in	which	case	a	model	can	only	predict
the	probability	of	various	outcomes	 in	 the	 future.	 In	 the	 remainder	of	 this	 chapter,	 as
well	as	in	Chapters	3–12,	we	focus	on	deterministic	models.	The	steps	for	constructing
stochastic	 models	 are	 similar,	 but	 we	 postpone	 further	 consideration	 of	 stochastic
models	until	Chapters	13–15.

Box	2.1	describes,	in	seven	steps,	how	to	construct	a	dynamical	model.	This	is	like
describing	how	to	ride	a	bike	in	a	series	of	steps;	obviously	we	can	only	give	an	idea
about	how	the	process	works.	Mastering	the	steps	requires	practice,	and	the	remainder
of	 this	 chapter	 contains	 a	 series	 of	 seven	 sections,	 each	 corresponding	 to	 one	 of	 the
seven	steps	in	Box	2.1.

Box	2.1:	Seven	Steps	to	Modeling	a	Biological	Problem

Step	1:	Formulate	the	question
What	do	you	want	to	know?
Describe	the	model	in	the	form	of	a	question.
Boil	the	question	down!
Start	with	the	simplest,	biologically	reasonable	description	of	the	problem.

Step	2:	Determine	the	basic	ingredients
Define	the	variables	in	the	model.
Describe	any	constraints	on	the	variables.
Describe	any	interactions	between	variables.
Decide	whether	you	will	treat	time	as	discrete	or	continuous.
Choose	 a	 time	 scale	 (i.e.,	 decide	what	 a	 time	 step	 equals	 in	 discrete	 time	 and

specify	 whether	 rates	 will	 be	 measured	 per	 second,	 minute,	 day,	 year,
generation,	etc.).

Define	the	parameters	in	the	model.
Describe	any	constraints	on	the	parameters.

Step	3:	Qualitatively	describe	the	biological	system
Draw	 a	 life-cycle	 diagram	 (see	 Figure	 2.2)	 for	 discrete-time	models	 involving

multiple	events	per	time	unit.



Draw	a	flow	diagram	to	describe	changes	to	the	variables	over	time.
For	models	with	many	 possible	 events,	 construct	 a	 table	 listing	 the	 outcome	 of

every	event.

Step	4:	Quantitatively	describe	the	biological	system
Using	the	diagrams	and	tables	as	a	guide,	write	down	the	equations.
Perform	 checks.	 Are	 the	 constraints	 on	 the	 variables	 still	 met	 as	 time	 passes?

Make	 sure	 that	 the	 units	 of	 the	 right-hand	 side	 equal	 those	 on	 the	 left-hand
side.

Think	about	whether	results	from	the	model	can	address	the	question.

Step	5:	Analyze	the	equations
Start	by	using	the	equations	to	simulate	and	graph	the	changes	to	the	system	over

time.
Choose	and	perform	appropriate	analyses.
Make	sure	that	the	analyses	can	address	the	problem.

Step	6:	Checks	and	balances
Check	the	results	against	data	or	any	known	special	cases.
Determine	how	general	the	results	are.
Consider	alternatives	to	the	simplest	model.
Extend	or	simplify	the	model,	as	appropriate,	and	repeat	steps	2–5.

Step	7:	Relate	the	results	back	to	the	question
Do	the	results	answer	the	biological	question?
Are	the	results	counterintuitive?	Why?
Interpret	the	results	verbally,	and	describe	conceptually	any	new	insights	into	the

biological	process.
Describe	potential	experiments.

2.2	Formulate	the	Question

The	first	step,	coming	up	with	a	question,	can	be	more	difficult	than	it	sounds.	In	most
biology	classes,	students	are	told	what	the	questions	are	and	what	answers	have	been
found.	Rarely	are	students	asked	to	formulate	scientific	questions	for	themselves.	This
is	 very	 unfortunate	 because,	 in	 any	 scientific	 enterprise	 (modeling	 or	 otherwise),	 the



process	 begins	with	 a	 question.	One	hint	 is	 to	 keep	 an	 eye	out	 for	 things	 that	 do	not
make	 sense	 or	 that	 seem	 to	 conflict—there	 very	 well	 might	 be	 an	 interesting	 and
nonintuitive	resolution.	For	now,	start	simple	and	don’t	worry	about	how	profound	your
question	is.	Look	around	you,	find	a	living	object,	and	think	up	one	question	about	how
it	might	change	over	time.	We	did	this	and	came	up	with	the	following	three	questions,
which	we	will	 use	 in	 this	 chapter	 to	 illustrate	model	 construction.	 (i)	How	does	 the
number	of	branches	of	a	tree	change	over	time?	(ii)	How	does	a	cat	change	the	number
of	mice	in	a	yard?	(iii)	How	does	the	number	of	people	with	the	flu	change	over	the	flu
season?

The	above	three	questions	are	“toy”	examples	that	will	make	it	easier	to	show	the
steps	of	modeling.	Nevertheless,	 these	simple	examples	also	embody	many	of	the	key
elements	 that	 come	 together	 in	 various	 combinations	 when	 constructing	 more
complicated	and	realistic	models.	As	we	will	see,	the	tree	branching	model	is	a	special
case	 of	 a	 model	 describing	 population	 growth.	 The	 mouse	 model	 incorporates	 an
important	 component	 of	 immigration	 that	 is	 commonly	used	 in	 ecology.	For	 example,
Blower	 et	 al.	 (2000)	 used	 a	 similar	 model	 of	 immigration	 to	 describe	 individuals
moving	into	the	gay	male	community	of	San	Francisco.	Finally,	the	flu	model	highlights
some	important	concepts	related	to	interactions	among	variables.	For	example,	the	way
that	we	will	model	 flu	 transmission	 is	 fundamentally	 similar	 to	 the	way	 that	Phillips
(1996)	 modeled	 the	 infection	 of	 cells	 by	 HIV.	 Thus,	 these	 toy	 models	 provide	 an
excellent	background	for	tackling	more	complex	models.

2.3	Determine	the	Basic	Ingredients

Once	you	have	a	question	in	mind,	proceed	to	Step	2	in	Box	2.1.	First,	think	about	what
entities	might	 change	 over	 time;	 these	 entities	 are	 the	 variables	 in	 your	 model.	 The
number	of	variables	will	depend	on	 the	question	of	 interest.	 In	our	 toy	examples,	we
might	choose	to	follow	(i)	the	number	of	branches	on	a	tree,	(ii)	the	number	of	mice	in	a
yard,	 and	 (iii)	 the	 number	 of	 people	with	 the	 flu	 and	 the	 number	without	 the	 flu.	 In
choosing	variables	to	track,	we	must	always	simplify	reality.	For	example,	in	keeping
track	 of	 the	 number	 of	 branches,	we	 lose	 information	 about	 their	 size	 and	 age.	As	 a
general	 principle,	 start	 simple,	 adding	more	 variables	 only	 when	 the	model	 fails	 to
address	the	question.

Next,	we	assign	a	 letter	 to	represent	each	variable—it	 is	easier	 to	write	“x”	 than
“the	number	of	 branches	on	 a	 tree.”	The	 letters	n,	 p,	 x,	 and	y	 are	 commonly	used	 to
represent	 variables,	 but	 the	 choice	 is	 arbitrary.	A	 good	 idea	 is	 to	 choose	 letters	 that
help	 you	 remember	 what	 the	 variable	 represents,	 e.g.,	 “n”	 for	 number	 or	 “p”	 for
proportion.	 If	 a	model	 contains	multiple	 variables	 that	 are	 similar	 in	 nature,	 placing
subscripts	on	the	variables	can	help	to	emphasize	their	similarity,	e.g.,	n1	and	n2	for	the



numbers	of	two	different	species.	For	our	models,	we	will	use	(i)	n(t)	for	the	number	of
branches	 on	 a	 tree,	 (ii)	n(t)	 for	 the	 number	 of	mice	 in	 a	 yard,	 and	 (iii)	n(t)	 for	 the
number	of	people	with	the	flu	and	s(t)	for	the	number	of	susceptible	people.

To	remind	ourselves	that	a	variable,	say	n,	varies	over	time,	we	can	write	it	as	n(t)
where	t	represents	time	and	there	is	no	space	between	the	n	and	the	(t).	The	parentheses
tell	us	that	our	variable	is	a	function	of	something	else	(time),	and	we	read	n(t)	as	“n	at
time	t.”	This	notation	helps	to	avoid	math	errors.	For	example,	without	this	notation,	we
might	forget	that	n	takes	on	different	values	at	different	times	and	mistakenly	treat	it	as	a
constant.	Be	aware,	however,	that	not	all	authors	use	the	same	notation;	they	might	write
nt	 instead	 or	might	 simply	 state	 that	 n	 is	 a	 variable	 and	 not	 write	 it	 explicitly	 as	 a
function	 of	 time.	The	 important	 thing	 is	 to	 be	 consistent	 and	 to	 remember	 that,	 if	we
write	a	variable	as	n(t),	we	mean	“n	at	time	t”	not	“n	times	t.”

Another	way	 to	 avoid	math	errors	 is	 to	keep	a	 list	 (at	 least	 a	mental	 list)	 of	 any
constraints	 that	 must	 remain	 true	 about	 the	 variables.	 For	 example,	 the	 number	 of
branches	on	a	 tree	should	never	become	negative.	The	number	of	people	with	 the	 flu
and	the	number	without	the	flu	should	never	be	negative	and	should	sum	up	to	the	total
population	 size.	 If	 a	 variable	 describes	 a	 frequency,	 a	 probability,	 or	 a	 fraction	 of	 a
whole	 (e.g.,	 the	 fraction	 of	 the	 total	 population	 with	 the	 flu),	 it	 should	 always	 lie
between	zero	and	one	(0	≤	p(t)	≤	1).	Ensuring	that	your	equations	and	results	obey	the
list	of	constraints	is	a	good	way	to	check	that	no	errors	have	crept	in.

Once	you	have	a	preliminary	list	of	variables,	the	next	step	is	to	choose	a	type	of
dynamical	model	to	describe	changes	in	these	variables.	There	are	two	main	types	of
dynamical	models,	discrete	 time	 and	continuous	 time,	 depending	 on	whether	 time	 is
represented	in	discrete	steps	or	along	a	continuous	axis.	Discrete-time	models	describe
how	the	variables	change	from	one	time	unit	(e.g.,	day,	year,	or	generation)	to	the	next.
Continuous-time	models	track	the	variables	over	any	period	of	time.	Both	discrete-time
and	 continuous-time	 models	 are	 idealizations	 of	 reality,	 and	 they	 make	 somewhat
different	assumptions.

A	discrete-time	model	tracks	changes	to	variables	in	discrete	time	steps.

Discrete-time	models	assume	that	changes	cannot	compound	within	a	time	unit.	For
example,	in	a	discrete-time	model	for	the	number	of	branches	on	a	tree,	branches	that
arise	during	a	time	unit	cannot	give	rise	to	new	branches	within	the	same	time	unit.	As
long	as	the	time	unit	is	short	enough	(e.g.,	a	day),	this	assumption	is	often	reasonable.	If
the	 time	 unit	were	 long	 (e.g.,	 a	 year),	 however,	 then	 some	 new	 branches	might	 very
well	branch	again	within	 the	year.	These	branching	events	would	not	be	counted	 in	a
discrete-time	model	if	the	new	branches	were	not	present	at	the	beginning	of	the	year.



A	continuous-time	model	allows	variables	to	change	at	any	point	in	time	(i.e.,	time	is	treated	as	continuous).

Continuous-time	models	assume	that	variables	can	change	at	any	point	in	time,	with
increments	 or	 decrements	 occurring	 even	 within	 tiny	 intervals	 of	 time.	 As	 a
consequence,	it	is	possible	for	a	change	to	occur	in	one	small	interval	of	time	followed
by	 the	 same	 type	 of	 change	 in	 the	 next	 small	 interval	 of	 time.	 But	 this	 may	 not	 be
biologically	 realistic.	 For	 example,	 a	 continuous-time	 model	 might	 allow	 a	 newly
formed	branch	to	immediately	produce	its	own	new	branch.	In	reality,	the	new	branch
must	undergo	enough	cell	divisions	to	produce	a	new	bud,	which	takes	time.	If	the	rate
of	branching	is	small,	then	this	won’t	be	much	of	a	problem	because	the	average	time
between	 branching	 events	 will	 be	 large.	 But	 if	 the	 rate	 of	 branching	 is	 high,	 then	 a
continuous-time	model	will	generate	 incorrect	predictions	unless	 it	 takes	 into	account
the	time	lag	between	the	formation	of	a	branch	and	the	formation	of	buds	on	this	new
branch.

Because	discrete-	and	continuous-time	models	treat	the	timing	of	events	in	different
ways,	they	display	different	temporal	dynamics.	In	discrete-time	models	the	variables
“jump”	from	one	value	to	another	from	one	time	unit	to	the	next,	and	the	size	of	these
jumps	can	be	small	or	large	depending	upon	the	parameters	of	the	model.	In	continuous-
time	models,	on	 the	other	hand,	 the	variables	change	smoothly	over	 time.	This	means
that,	 as	 a	 variable	 goes	 from	 one	 value	 to	 another,	 it	 passes	 through	 all	 intervening
values	along	the	way	(Figure	2.1).

In	 either	 case,	 we	 must	 also	 choose	 a	 time	 scale	 over	 which	 changes	 to	 the
variables	 are	measured.	We	use	 a	“day”	 as	 the	basic	unit	 of	 time	 for	 the	 toy	models
considered	in	this	chapter.	Specifically,	we	assume	that	each	time	step	in	discrete-time
models	 reflects	 the	 passage	 of	 24	 hours	 and	 that	 all	 processes	 in	 continuous-time
models	occur	at	a	rate	measured	per	day.

Just	 as	 time	 can	 be	modeled	 discretely	 or	 continuously,	 so	 too	 can	 the	 variables
themselves.	For	 example,	 the	number	of	 branches	on	 a	 tree,	 the	number	of	mice	 in	 a
yard,	and	 the	number	of	people	with	 the	flu	are	all	discrete,	 integer-valued	quantities
(i.e.,	 they	 are	 integers	 such	 as	 0,1,2,	 .	 .	 .	 ,	 etc.).	 On	 the	 other	 hand,	 an	 organism’s
metabolic	 rate	 or	 an	 organism’s	 weight	 can	 take	 on	 any	 of	 a	 continuum	 of	 possible
values.	Regardless	of	the	true	nature	of	the	variables,	the	majority	of	models	in	ecology
and	 evolution	 treat	 variables	 as	 being	 continuous,	 an	 approach	 that	 we	 follow
throughout	 most	 of	 the	 book	 (except	 in	 Chapters	 13–15,	 which	 incorporate	 random
events	 and	 explicitly	 track	 the	 numbers	 of	 each	 type).	 There	 are	 three	 main
justifications	 for	 treating	 variables	 as	 continuous.	 First,	 for	 many	 questions,	 the
variables	of	 interest	 take	on	large	enough	values	 that	 treating	them	as	continuous	will
introduce	very	little	error	in	the	results	(e.g.,	the	number	of	HIV	particles	in	the	blood).
Second,	a	reinterpretation	of	the	variable	(e.g.,	as	the	total	biomass	of	mice	rather	than
the	number	of	mice)	can	sometimes	justify	the	use	of	a	continuous	variable.	Third,	it	is



typically	 easier	 mathematically	 to	 treat	 variables	 as	 being	 continuous	 rather	 than
discrete.	 Remember,	 all	 models	 are	 abstractions	 of	 biological	 reality,	 and	 treating
variables	as	continuous	is	often	a	reasonable	abstraction.

Figure	2.1:	Tree	branching.	A	plot	of	the	number	of	branches	on	a	tree	over	time	using	a	discrete-time	model	and	a
continuous-time	model.

In	discrete-time	models,	we	track	changes	to	a	variable	using	a	recursion	equation,
which	describes	the	value	of	a	variable	(say,	n)	in	the	next	time	unit	as	a	function	of	the
variable	in	the	current	time	unit:

A	recursion	equation	describes	the	value	of	a	variable	in	the	next	time	step.

Such	equations	are	called	recursions,	because	one	can	apply	 them	recursively	 to	 find
out	how	the	variable	changes	across	a	number	of	time	units	(from	t	to	t	+	1,	then	from	t
+	1	to	t	+	2,	etc.).	An	equivalent	way	to	track	a	variable	is	to	use	a	difference	equation.
A	difference	equation	specifies	how	much	a	variable	changes	from	one	time	unit	to	the
next,	 and	 it	 is	 just	 the	difference	between	 the	 recursion	equation	 for	n(t	+	1)	and	 the
current	value	of	the	variable	n(t):

where	 the	 capital	Greek	 letter	Δ	 (“Delta,”	 see	Table	2.1)	 denotes	 “change,”	 and	we
read	Δn	 as	 “the	 change	 in	 the	 variable	n.”	 Recursion	 equations	 are	more	 commonly
used	 to	 describe	 the	 value	 of	 a	 variable	 in	 discrete-time	 models,	 but	 we	 will
occasionally	 use	 difference	 equations	 when	 we	 want	 to	 understand	 how	 much	 a



variable	changes	across	a	time	step.
In	 continuous-time	models,	 equations	 specify	 the	 rate	 of	 change	 of	 the	 variables

over	time:

Such	 equations	 are	 called	 differential	 equations.	 Differential	 equations	 are	 distinct
from	 the	 more	 familiar	 derivatives	 taught	 in	 introductory	 calculus	 courses	 (see	 Box
2.2).	You	can	think	of	a	differential	equation	as	a	description	of	the	ebb	and	flow	in	a
variable	over	time.	To	get	a	better	feel	for	a	differential	equation,	imagine	plotting	the
value	of	the	variable	n(t)	as	a	function	of	time	(see	Chapter	4).	The	slope	of	the	curve
would	be	d(n(t))/dt	because	the	derivative	of	a	function	at	a	point	gives	the	slope	of	the
function	 at	 that	 point.	 If	 the	 variable	 is	 increasing	 over	 time,	 the	 slope	 and	 thus
d(n(t))/dt	 are	 positive.	 If	 the	 variable	 is	 decreasing	 over	 time,	 the	 slope	 and	 thus
d(n(t))/dt	are	negative.	When	the	magnitude	of	d(n(t))/dt	is	small,	the	variable	changes
slowly	 over	 time,	 whereas	 when	 the	 magnitude	 of	 d(n(t))/dt	 is	 large,	 the	 variable
changes	rapidly.	As	we	will	see,	this	mental	picture	is	the	reverse	of	how	we	typically
construct	models.	We	usually	start	by	describing	how	various	biological	forces	change
the	 value	 of	 the	 variable	 (i.e.,	 contribute	 to	 d(n(t))/dt),	 and	we	 then	 try	 to	 infer	 the
value	of	the	variable	itself	(i.e.,	n(t)).

A	differential	equation	describes	the	rate	at	which	a	variable	changes	over	time.

Which	type	of	model	should	be	used?	Sometimes,	there	is	a	natural	choice.	If	you
want	to	model	the	number	of	annual	plants	on	an	island,	a	discrete-time	model	using	a
year	 as	 the	 time	 unit	 is	 appropriate	 because	 the	 life	 cycle	 of	 annual	 plants	 is	 itself
discrete;	 that	 is,	 the	 seeds	 produced	 during	 one	 year	 will	 not	 germinate	 until	 the
following	year.	By	contrast,	if	you	want	to	model	your	blood	sugar	levels	after	a	meal,
a	 continuous-time	 model	 would	 be	 more	 natural	 because	 there	 are	 no	 clear
demarcations	in	time.	Conceptually,	it	is	sometimes	easier	to	think	in	terms	of	discrete-
time	models	where	changes	describe	what	happens	over	an	interval	of	time	rather	than
continuous-time	 models	 where	 changes	 are	 described	 by	 instantaneous	 rates.
Mathematically,	however,	continuous-time	models	can	be	easier	to	analyze	because	one
can	utilize	the	various	rules	of	calculus	summarized	in	Appendix	2	(see	Chapter	6).	As
we	discuss	 later	 (Box	2.6	 and	Chapter	 4),	 discrete-time	 and	 continuous-time	models
can	sometimes	exhibit	 similar	behavior	over	 time,	and	 it	 is	possible	 to	predict	when
they	should	behave	similarly.	Thus,	 in	many	cases,	one	 is	 free	 to	choose	between	 the
two.

Table	2.1



Greek	letters.	Here,	we	list	the	Greek	letters	commonly	encountered	in	biological	models	(with	alternative	characters
in	parentheses).

Box	2.2:	Derivatives	and	Differential	Equations

Calculus	 is	 the	 mathematical	 study	 of	 rates	 of	 change.	 The	 most	 important
concepts	and	rules	of	calculus	are	summarized	in	Appendix	2,	including	formulas
for	 differentiating	 and	 integrating	 a	 variety	 of	 functions.	 For	 example,	 the
derivative	of	the	polynomial	y	=	ax2	+	bx	+	c	with	respect	to	x	is	dy/dx	=	2ax	+	b.
Here,	 the	 rate	 of	 change	 of	 the	 dependent	 variable	 y	 is	 a	 function	 only	 of	 the
independent	variable	x.	In	many	biological	problems,	however,	the	rate	of	change
of	the	dependent	variable	is	a	function	of	the	dependent	variable	itself,	e.g.,	dy/dx
=	αy	+	β.	Notice	that	 the	variable	on	the	right-hand	side	is	y	not	x.	An	equation



relating	the	derivative	of	a	variable	to	a	function	of	the	variable	itself	is	called	a
differential	 equation.	 Equations	 (2.8)–(2.10)	 are	 differential	 equations.	 For
example,	in	equation	(2.8),	the	derivative	of	the	dependent	variable	describing	the
number	of	tree	branches,	n(t),	with	respect	to	the	independent	variable	(time	t)	is
a	function	of	n(t),	not	t.	Differential	equations	naturally	arise	 in	continuous-time
biological	models	because	we	often	expect	the	rate	of	change	of	a	variable	to	be	a
function	 of	 its	 current	 value.	 For	 example,	 large	 trees	 can	 have	 more	 new
branches,	 a	 cat	 can	 eat	more	mice	 if	 there	 are	more	mice	 available,	 and	more
people	 can	 catch	 the	 flu	 if	 there	 are	 more	 susceptible	 people	 within	 the
population.

A	derivative	or	differential	equation	describes	how	a	variable	changes.	But
what	we	usually	want	to	know	is	the	value	of	the	dependent	variable	(e.g.,	n(t))
as	a	function	of	the	independent	variable	(e.g.,	t).	In	a	typical	calculus	course,	we
are	 taught	 how	 to	 solve	 for	 y	 by	 taking	 the	 anti-derivative	 or	 integral	 of	 both
sides.	 In	other	words,	we	could	solve	 the	equation	dy/dx	=	2ax	+	b	 for	y(x)	by
integrating	both	sides	with	respect	to	x	to	obtain	its	solution,	y	=	ax2	+	bx	+	c	(see
Appendix	2),	which	gives	us	 the	value	of	y	 for	any	value	of	x.	A	common	error
that	students	make	when	they	first	encounter	differential	equations	is	 to	integrate
the	 left-hand	 side	 of	 an	 equation	 like	 dn(t)/dt	 =	bn(t)	with	 respect	 to	 t	 but	 the
right-hand	side	with	respect	to	n(t).	This	would	give	n(t)	=	bn(t)2/2.	To	see	that
this	is	incorrect,	take	the	derivative	of	both	sides	with	respect	to	t	(see	Appendix
2).	This	would	give	dn(t)/dt	=	bn(t)dn(t)/dt,	which	incorrectly	has	dn(t)/dt	on	the
right-hand	 side.	 The	 error	 in	 this	 procedure	 crept	 in	 when	 we	 took	 the	 anti-
derivative	 of	 the	 left-hand	 side	 with	 respect	 to	 t,	 but	 the	 antiderivative	 of	 the
right-hand	 side	with	 respect	 to	 a	 different	 variable,	 n(t).	 To	 solve	 for	n(t)	 we
would	have	to	take	the	antiderivative	of	both	sides	with	respect	to	t,	i.e.,

The	 left-hand	 integral	 is	 n(t),	 as	 before,	 but	 we	 cannot	 evaluate	 the	 right-hand
integral	because	doing	so	 requires	n(t),	which	 is	what	we	 are	 trying	 to	 find.	 In
Chapter	 6,	 we	will	 see	 how	 to	 obtain	 solutions	 to	 certain	 types	 of	 differential
equations,	 like	 the	 ones	 presented	 in	 this	 chapter.	 For	 now,	 it	 is	 enough	 to
recognize	 the	 distinction	 between	 derivatives	 and	 differential	 equations	 and	 to
remember	that	care	must	be	taken	when	integrating	differential	equations.

Before	 leaving	 the	 subject,	 it	 is	worth	mentioning	 that	 the	 term	“differential
equation”	encompasses	several	types	of	equations,	all	of	which	arise	in	biology.
Differential	 equations	 can	 be	 written	 as	 functions	 of	 more	 than	 one	 dependent
variable.	For	example,	in	our	flu	model,	the	differential	equation	(2.10a)	for	the



number	of	people	with	the	flu,	dn(t)/dt,	will	depend	on	both	the	number	of	people
with	the	flu,	n(t),	and	the	number	of	susceptible	individuals	in	the	population,	s(t).
Differential	 equations	 can	 also	 be	 written	 as	 functions	 of	 both	 the	 dependent
variable	n(t)	 and	 the	 independent	 variable	 t.	 Such	 differential	 equations	 arise
whenever	we	expect	a	variable	 to	change	as	a	function	both	of	 its	current	value
and	of	 time.	For	example,	 in	a	 seasonal	environment,	 the	budding	 rate	of	a	 tree
should	depend	on	the	time	of	year	as	well	as	on	the	number	of	branches	on	a	tree.
We	 can	 model	 this	 by	 treating	 b	 as	 some	 function	 of	 time,	 b(t),	 rather	 than	 a
constant.	 In	 addition,	 differential	 equations	might	 depend	 on	 the	 past	 state	 of	 a
variable	 as	 well	 as	 (or	 instead	 of)	 its	 current	 state.	 For	 example,	 in	 the	 tree
branching	example,	the	production	of	new	branches	at	time	t	might	depend	on	the
total	number	of	branches	 	days	ago,	or	n(t	−	 ),	as	these	branches	are	now	large
enough	to	branch	again.	Revising	equation	(2.8)	gives	dn(t)/dt	=	bn(t	−	 ).	Such
equations,	 known	 as	 “delay	 differential	 equations,”	 arise	 naturally	 when
describing	biological	processes	involving	time	lags.

All	of	the	above	examples	have	only	one	independent	variable	(time).	These
fall	 into	 the	 category	 known	 as	 “ordinary	 differential	 equations”	 (ODE).	Many
biological	problems	 involve	more	 than	one	 independent	variable	 (e.g.,	 space	as
well	 as	 time),	 and	 such	differential	 equations	are	known	as	“partial	differential
equations”	(PDE).

The	 next	 step	 is	 to	 describe	 the	 parameters	 of	 the	model;	 these	 are	 the	 various
quantities	that	influence	the	dynamics	of	the	model,	but	that	remain	fixed	over	time	as
the	variables	change.	As	with	variables,	each	parameter	is	given	its	own	symbol,	which
you	are	 free	 to	 choose.	Commonly	used	 symbols	 for	parameters	 are	 italicized	 roman
letters	(e.g.,	a,	b,	c,	d,	m,	and	r)	and	lower-case	greek	letters	(e.g.,	α,	β,	Table	2.1).

A	 chief	 difference	 between	 discrete-time	 and	 continuous-time	 models	 is	 that
parameters	representing	events	per	unit	time	are	described	as	the	number	of	events	(or
fraction	of	the	population	undergoing	the	event)	per	time	step	in	discrete-time	models
but	 as	 the	 instantaneous	 rate	 of	 events	 per	 unit	 time	 in	 continuous	 time.	 In	 contrast,
parameters	that	do	not	represent	events	per	unit	time	(e.g.,	the	probability	that	an	event
is	one	type	or	another)	retain	the	same	definition	in	the	two	types	of	models.	We	will
discuss	the	difference	in	parameter	units	between	discrete-	and	continuous-time	models
at	greater	length	in	Box	2.6,	once	we	have	described	how	their	dynamical	equations	are
derived.

Potential	 parameters	 for	 our	 discrete-time	models	 include	 (i)	 the	 number	 of	 new
branches	 that	bud	off	each	old	branch	per	day,	b;	 (ii)	 the	 fraction	of	mice	 in	 the	yard
eaten	by	the	cat	per	day,	d,	and	the	number	of	mice	born	per	mouse	per	day,	b;	(iii)	the
fraction	 of	 healthy	 people	 that	 are	 exposed	 to	 a	 flu	 carrier	 per	 day,	 c,	 and	 the



probability	of	 transmission	of	 the	flu	between	a	healthy	person	and	a	flu	carrier	upon
exposure,	a.	The	analogous	parameters	in	a	continuous-time	model	would	be	(i)	the	rate
of	budding	for	each	old	branch,	b;	(ii)	the	rate	of	consumption	of	mice,	d,	and	the	rate	of
births	per	mouse,	b;	and	(iii)	the	rate	of	contact	between	a	flu	carrier	and	a	susceptible
person,	c,	and	the	probability	of	transmission	of	the	flu	between	a	carrier	and	a	healthy
person	 per	 contact,	 a.	 These	 parameters	 represent	 events	 per	 unit	 time	 and	 so	 have
slightly	different	definitions	for	the	discrete-time	and	continuous-time	models	except	a,
which	always	represents	the	probability	of	contracting	the	flu	per	contact.

As	with	variables,	one	should	also	keep	track	of	any	constraints	imposed	on	each
parameter.	For	 example,	 can	 a	 parameter	 be	negative?	Does	 a	 parameter	 represent	 a
fraction,	proportion,	or	probability,	 in	which	case	 it	must	 fall	between	zero	and	one?
These	constraints	might	well	depend	on	the	type	of	model.	For	example,	the	parameter
d	 in	 the	 cat-mouse	model	 is	 restricted	 to	 lie	 between	 zero	 and	 one	 in	 discrete-time
models	 (because	 it	 represents	 the	 fraction	 of	 mice	 eaten	 by	 the	 cat),	 whereas	 the
analogous	 parameter	 d	 in	 the	 continuous-time	 model	 can	 have	 any	 positive	 value
(because	it	represents	the	rate	of	consumption	of	mice	per	unit	 time).	This	 is	another
common	 difference	 in	 the	 parameters	 between	 discrete-	 and	 continuous-time	models
(described	more	fully	in	Box	2.6).

In	addition	to	the	absolute	constraints	on	each	parameter,	it	is	worth	keeping	track
of	 the	 range	 of	 parameter	 values	 that	 are	 biologically	 reasonable.	 For	 example,	 it	 is
reasonable	to	assume	that	the	number	of	new	branches	that	bud	off	each	old	branch	per
day	is	small	for	most	trees	(b	<<	1).	Similarly,	the	number	of	mice	born	per	mouse	per
day	(b)	will	be	much	less	than	one	(b	<<	1).	We	write	b	<<	1	to	imply	that	b	is	much
smaller	than	one.	How	much	smaller	depends	on	the	context,	but	typically	this	statement
implies	 that	 b	 is	 0.1	 or	 less.	 Having	 a	 list	 of	 constraints	 and	 reasonable	 ranges	 for
parameters	can	help	in	two	important	ways.	First,	reasonable	parameter	values	must	be
chosen	 to	 carry	 out	 realistic	 simulations	 and	 to	 plot	 relevant	 graphs.	 Second,	 results
from	a	model	often	depend	on	the	values	of	the	parameters,	e.g.,	whether	a	parameter	is
positive	or	negative,	large	or	small,	so	that	making	accurate	predictions	from	a	model
depends	on	choosing	appropriate	parameter	values.

Before	proceeding	to	the	next	step,	it	is	a	good	idea	to	construct	a	table	of	all	the
variables	and	parameters	in	your	model,	as	well	as	any	constraints	on	these	terms.	You
can	later	revisit	this	table	to	ensure	that	it	includes	the	variables	and	parameters	needed
to	capture	the	essence	of	the	biological	process	and	to	address	the	question	of	interest.
It	 is	 very	 common	 that	 the	 first	 version	 of	 a	model	 includes	 too	many	 variables	 and
parameters,	causing	the	model	 to	be	unnecessarily	complex,	or	 too	few	variables	and
parameters,	causing	a	model	 to	behave	 in	unintended	ways	(e.g.,	populations	grow	to
infinite	 size,	 or	 nobody	 ever	 recovers	 from	 the	 flu).	 If	 a	model	 displays	 unintended
behavior,	then	think	about	whether	the	biological	system	being	modeled	includes	other
processes	that	should	also	be	incorporated	into	the	model	(e.g.,	competition,	recovery).



2.4	Qualitatively	Describe	the	Biological	System

Before	 writing	 equations	 down,	 it	 is	 a	 very	 good	 idea	 to	 organize	 your	 model
conceptually	with	the	aid	of	a	diagram	or	table.	Diagrams	and	tables	make	it	easier	to
see	whether	the	necessary	variables	and	parameters	are	included	and	make	it	easier	to
write	 down	 dynamical	 equations	 (recursion	 equations	 or	 differential	 equations).	We
describe	 three	organizational	 techniques:	a	 life-cycle	diagram,	a	 flow	diagram,	and	a
table	of	events.

2.4.1	Life-Cycle	Diagrams
A	 graphical	 technique,	 which	 we	 call	 a	 life-cycle	 diagram,	 keeps	 track	 of	 the

various	events	occurring	during	a	single	time	step,	along	with	their	order	of	occurrence.
Such	diagrams	are	useful	only	for	discrete-time	models,	where	there	is	a	discrete	time
period	during	which	various	events	can	occur.	As	a	simple	example,	consider	the	tree
branching	model.	Each	time	step	represents	a	single	day,	and	only	one	type	of	event	can
happen	 during	 any	 given	 day:	 the	 growth	 of	more	 branches.	As	 result,	 the	 life-cycle
diagram	is	extremely	simple	(Figure	2.2a).

A	life-cycle	diagram	illustrates	the	order	of	events	that	occur	within	each	time	step	(for	discrete-time	models).

The	 tree	 branching	 model	 is	 so	 simple	 that	 a	 life-cycle	 diagram	 is	 not	 really
required	to	organize	 things.	Life-cycle	diagrams	become	indispensable	when	multiple
events	occur	during	a	single	time	step.	Consider	the	model	of	mice	being	eaten	by	a	cat.
Now	 there	 are	 three	 events	 that	occur	 each	day:	mice	give	birth,	mice	move	 in	 from
neighboring	areas,	and	the	cat	eats	mice.	In	a	discrete-time	model,	one	must	choose	an
order	for	these	events,	as	well	as	a	point	in	time	when	the	population	is	censused	(e.g.,
when	we	count	the	number	of	mice,	n(t)).	For	example,	Figure	2.2b	illustrates	the	case
where	events	occur	in	the	following	order:	a	census,	followed	by	predation	by	the	cat,
mouse	births,	mouse	migration,	and	finally	the	next	census.	These	events	cause	changes
to	 the	 number	 of	 mice,	 which	 we	 describe	 as	 n(t)	 at	 the	 census	 point,	 n′(t)	 after
predation,	n″(t)	after	births,	and	n″′(t)	after	migration.	Because	migration	is	assumed	to
occur	last	in	the	daily	life	cycle,	the	number	of	mice	at	the	next	census,	n(t	+	1),	will
equal	 n″	 ′(t).	 Alternatively,	 we	 might	 instead	 assume	 that	 births	 happen	 first,	 then
migration,	and	then	predation,	yielding	the	life	cycle	in	Figure	2.3.	As	we	shall	see,	the
order	of	events	in	a	life	cycle	can	affect	the	results	of	a	model,	sometimes	substantially.

Finally,	 consider	 constructing	 a	 life-cycle	 diagram	 for	 the	 model	 of	 flu
transmission.	 The	 time	 step	 is	 again	 one	 day,	 and	 as	with	 the	 tree	 branching	model,
there	 is	 only	 a	 single	 event	 that	 can	happen	during	 each	day:	 transmission	of	 the	 flu.
There	 is	 an	 additional	wrinkle	with	 this	model,	 however,	 in	 that	 there	 are	 now	 two



variables	that	we	are	tracking	(healthy	individuals	and	people	with	the	flu).	As	a	result,
we	 could	 construct	 a	 life-cycle	 diagram	 for	 each	 of	 the	 variables	 (Figure	 2.2c).	 But
because	there	is	only	one	event	per	cycle,	these	life-cycle	diagrams	are	again	not	very
useful	(as	was	the	case	with	the	tree	branching	model).

2.4.2	Flow	Diagrams
A	second	method	 for	 organizing	 a	model,	which	 is	 often	more	 useful	 for	models

containing	 multiple	 variables,	 is	 a	 flow	 diagram.	 A	 flow	 diagram	 illustrates	 the
interconnections	 among	 the	 variables	 and	 provides	 a	 schematic	 picture	 of	 how	 each
variable	affects	its	own	dynamics	as	well	as	the	dynamics	of	the	other	variables.	In	a
typical	flow	diagram,	each	circle	represents	one	variable	within	the	model.	Returning
arrows	that	exit	and	come	back	to	the	same	circle	represent	a	variable	that	can	generate
more	of	itself.	As	a	very	simple	example,	a	flow	diagram	for	the	tree	branching	model
has	 a	 single	 returning	 arrow,	 representing	 the	budding	of	 a	 tree	branch	 into	new	 tree
branches	(Figure	2.4a).

A	flow	diagram	illustrates	how	each	variable	affects	its	own	dynamics	and	those	of	other	variables.



Figure	2.2:	Life	cycle	diagrams.	Life	cycle	diagrams	for	the	three	toy	models	explored	in	this	chapter:	(a)	the	number
of	tree	branches,	(b)	the	number	of	mice,	(c)	the	number	of	people	with	and	without	the	flu.



Figure	 2.3:	Alternate	 life	 cycle	 diagram.	A	 life	 cycle	 diagram	 for	 the	 number	 of	mice	with	 a	 different	 ordering	 of
events	than	occurs	in	Figure	2.2b.

Arrows	leading	into	a	circle	represent	the	different	ways	in	which	a	variable	can
go	up	over	time,	while	arrows	exiting	a	circle	represent	the	different	ways	in	which	the
variable	can	go	down	over	time.	A	flow	diagram	for	the	mouse	population	has	one	of
each	of	these,	representing	immigration	and	deaths,	respectively,	along	with	a	returning
arrow	representing	births	(Figure	2.4b).	Unfortunately,	flow	diagrams	for	discrete-time
models	are	cumbersome	when	multiple	events	can	occur	within	a	single	time	step	(as	in
this	mouse	model)	 because	 it	 is	 difficult	 to	 depict	 the	 ordering	 of	 the	 events.	 To	 be
consistent	with	the	ordering	of	events	in	Figure	2.2b,	we	need	to	consider	flow	across
the	death	arrow	first,	then	the	birth	arrow,	and	finally	the	migration	arrow,	updating	the
variable	after	each	event	(e.g.,	from	n(t)	to	n′(t)	after	the	first	event).

Flow	diagrams	become	really	useful	when	there	are	multiple	variables.	In	our	flu
model,	we	are	tracking	the	number	of	susceptible	and	infected	individuals.	There	must
be	 an	 interaction	 (contact)	 between	 an	 infected	 and	 a	 susceptible	 person	 for
transmission	 to	occur,	 and	 this	 can	be	 represented	on	 a	 flow	diagram	 in	 a	 variety	of
ways.	 In	 Box	 2.3,	 we	 describe	 a	 convention	 for	 building	 flow	 diagrams,	 which	 is
designed	 to	 facilitate	 the	 process	 of	 converting	 flow	 diagrams	 into	 mathematical
equations.	 According	 to	 this	 convention,	 an	 interaction	 between	 two	 variables	 is
represented	 by	 the	 merging	 of	 arrows	 emanating	 from	 two	 circles	 (Figure	 2.4c).
Different	 people	 use	 different	 conventions,	 but	 sticking	 to	 the	 same	 convention	 is
important	to	avoid	mistakes	along	the	way.

Flow	diagrams	are	constructed	in	the	same	way	for	continuous-time	and	discrete-
time	 models	 (Box	 2.3).	 For	 continuous-time	 models,	 however,	 the	 arrows	 represent
events	occurring	continuously	over	time	at	certain	rates,	and	we	do	not	have	to	worry
about	the	order	in	which	events	take	place	(e.g.,	we	do	not	have	to	update	the	variables
from	n(t)	to	n′(t)	after	the	first	event).



On	 a	 flow	 diagram,	 it	 is	 very	 useful	 to	 specify	 (mathematically)	 the	 flow
represented	by	each	arrow	directly	on	the	diagram,	including	how	this	flow	depends	on
the	variable(s)	themselves	(step	8	of	Box	2.3).	This	convention	allows	us	to	distinguish
between	a	constant	number	exiting	a	circle	(e.g.,	D,	if	your	cat	eats	a	constant	number
D	of	mice	per	day)	and	a	constant	fraction	exiting	a	circle	(e.g.,	d	n(t),	if	your	cat	eats
a	constant	fraction	d	of	available	mice	per	day).	Specifying	the	flows	is	the	hardest	step
in	 constructing	 a	 flow	 diagram,	 because	 it	 forces	 us	 to	 be	 very	 specific	 about	 the
biological	processes	that	we	are	modeling.

Figure	2.4:	Flow	diagrams.	Flow	diagrams	for	the	examples	explored	in	this	chapter:	(a)	the	number	of	tree	branches,
(b)	the	number	of	mice,	(c)	the	number	of	people	with	and	without	the	flu.

Specifying	 the	 flow	 for	 each	 arrow	 also	 forces	 us	 to	 describe	 if	 and	 how	 the



variables	interact.	Interactions	come	in	many	different	forms	depending	on	the	type	and
complexity	 of	 the	 interaction.	 For	 the	 flu	 model	 in	 Figure	 2.4c,	 we	 have	 used	 the
simplest	form	of	interaction,	known	as	a	mass-action	interaction.	Mass	action	refers	to
the	assumption	 that	 two	 types	 interact	 at	 a	 rate	 that	 is	proportional	 to	 the	number	 (or
density)	of	the	first	type	times	the	number	(or	density)	of	the	second	type,	just	as	if	the
two	types	were	moving	about	and	bumping	into	each	other	at	random.	In	the	flu	model,
we	assume	that	 individuals	with	 the	flu	 interact	with	susceptible	 individuals	at	a	 rate
proportional	 to	 n(t)	 s(t).	 Specifically,	 an	 infected	 individual	 has	 a	 probability	 c	 of
contacting	 any	 given	 one	 of	 the	 s(t)	 susceptible	 individuals	 per	 day,	 giving	 a	 total
number	 of	 contacts	 per	 day	 of	 c	 s(t)	 per	 infected	 individual.	 With	 n(t)	 infected
individuals	in	the	population,	we	expect	a	total	of	c	n(t)	s(t)	contacts	per	day	across	the
whole	population.	The	probability	that	any	one	contact	results	in	the	transmission	of	the
influenza	virus	is	a,	and	therefore	we	expect	a	total	of	a	c	n(t)	s(t)	new	cases	of	flu	per
day.	This	is	written	below	the	arrow	in	Figure	2.4c.

A	mass-action	interaction	assumes	that	the	rate	of	interaction	between	two	variables	is	proportional	to	the	values
of	each.

Box	2.3:	Drawing	Flow	Diagrams

(1)	Draw	a	separate	circle	to	represent	each	variable	in	your	model.
(2)	Use	a	solid	arrow	to	 indicate	when	a	process	removes	an	amount	of	 the

variable	 (arrow	 exits	 circle)	 or	 contributes	 an	 amount	 to	 the	 variable
(arrow	enters	circle).

(3)	Use	an	arrow	that	comes	from	nowhere	but	that	enters	a	circle	to	indicate
when	there	is	an	external	source	for	one	of	the	variables	(e.g.,	mice	from
another	field).

(4)	Use	an	arrow	that	comes	from	a	circle	but	goes	to	nowhere	(or	to	a	skull)
to	indicate	when	a	variable	exits	the	system	(e.g.,	by	death	or	emigration).

(5)	Use	an	arrow	that	starts	at	one	circle	and	goes	to	another	circle	to	indicate
when	one	type	can	become	converted	into	another	type	(e.g.,	a	susceptible
individual	catches	the	flu).

(6)	Use	a	dashed	arrow	to	indicate	when	a	variable	influences	the	flow	into
another	circle	but	does	not	represent	a	decline	in	the	variable	from	which
the	arrow	begins	(e.g.,	in	Figure	2.4c,	a	carrier	of	the	flu	does	not	lose	the
flu	by	passing	it	on).

(7)	 Include	 an	 arrow	 that	 exits	 and	 returns	 to	 the	 same	 circle	 (“a	 returning



arrow”)	 whenever	 a	 variable	 can	 generate	more	 of	 itself	 (e.g.,	 by	 new
births).	A	returning	arrow	can	represent	changes	due	to	births	only,	or	can
describe	the	net	change	following	both	births	and	deaths.

(8)	Write	 down	 the	 total	 flow	 along	 each	 arrow,	 specifying	 how	 this	 flow
depends	 on	 the	 variable	 from	 which	 the	 arrow	 comes	 and	 on	 any
interacting	variables.	If	the	flow	across	an	arrow	represents	a	conversion
from	 one	 type	 to	 another	 (e.g.,	 from	 number	 of	 prey	 to	 number	 of
predators),	 there	 may	 be	 a	 conversion	 factor	 (e.g.,	 one	 prey	 might
represent	 only	 ε	 =	 1/100	 of	 the	 resources	 needed	 to	 produce	 one
predator).	Write	this	factor	as	“times	ε”	at	the	end	of	the	arrow.

(9)	For	discrete-time	models,	decide	on	an	ordering	for	the	various	events	that
occur	during	each	time	step	and	put	a	prime	after	the	variable	to	indicate
its	state	“after	the	first	event,”	a	double	prime	after	the	variable	to	indicate
its	state	“after	the	second	event,”	etc.

(10)	Check	to	make	certain	 that	your	variables	are	 linked	 together	 in	 the	way
that	you	want.

(11)	Check	to	make	sure	that	each	arrow	has	a	flow	rate	written	by	it.
(12)	Check	to	see	if	there	are	any	variables	that	are	completely	unconnected	to

the	rest	of	the	diagram.
(13)	Check	to	see	if	there	are	any	parameters	in	your	model	that	do	not	appear

on	the	flow	diagram.
(14)	For	a	discrete-time	model,	check	that	there	is	never	more	than	100%	of	a

variable	leaving	a	circle.

The	 use	 of	mass	 action	 in	 the	 flu	model	makes	 qualitative	 sense;	 if	 there	 are	 no
people	with	the	flu	(n(t)	=	0)	or	if	there	are	no	individuals	susceptible	to	the	flu	(s(t)	=
0),	then	there	will	be	no	new	cases	of	the	flu,	because	a	c	n(t)	s(t)	is	zero.	There	may,
however,	be	times	when	you	are	not	yet	ready	to	specify	the	details	of	such	interactions.
If	 so,	you	can	write	 the	 flow	 in	general	 terms	as	g(s(t),n(t)),	 indicating	 that	 the	 flow
rate	is	some	function	g()	that	depends	on	the	variables	s(t)	and	n(t).	This	lets	you	put
off	the	decision	of	how	the	interactions	depend	on	the	variables	until	later.

Once	a	flow	diagram	has	been	labeled,	steps	(11)–(15)	of	Box	2.3	describe	various
checks	to	ensure	that	the	flow	diagram	accurately	reflects	your	model.	If	any	problems
arise,	 return	 to	 section	 2.3	 and	 revise	 your	 list	 of	 variables,	 parameters,	 and
constraints,	adding	and	subtracting	as	necessary.	It	is	critical	to	repeat	this	process	until
you	are	happy	that	the	flow	diagram	captures	the	essence	of	the	biological	process	that
you	wish	to	model.



2.4.3	Tables	of	Events
For	discrete-time	models	involving	multiple	events	within	a	time	step	and	multiple

variables,	neither	 life-cycle	diagrams	nor	 flow	diagrams	easily	encapsulate	all	of	 the
relevant	 information.	 In	 such	 cases,	 a	 table	 of	 events	 can	 be	 a	 useful	 organizational
tool.	We	illustrate	the	construction	of	such	a	table	using	the	flu	model	(Table	2.2).	This
model	 has	 only	 one	 event	 per	 time	 step	 (infection),	 so	 that	 a	 table	 is	 not	 really
necessary.	In	more	complex	models,	however,	such	tables	of	events	are	invaluable.	For
example,	Table	8.1	organizes	the	events	for	an	evolutionary	model	involving	two	genes,
where	 we	 must	 consider	 several	 events	 (fertilization,	 selection,	 meiosis,	 and
recombination)	acting	on	every	possible	type	within	the	population.

TABLE	2.2
Interaction	table	for	the	flu	model.	The	first	column	lists	every	possible	pair	of	individuals	that	could	come	into	contact.
The	 second	 column	 lists	 the	 number	 of	 each	 type	 of	 contact.	The	 remaining	 columns	 list	 the	 change	 in	 number	 of
infected	and	susceptible	individuals	resulting	from	such	a	contact.	(Alternatively,	we	could	have	listed	the	number	of
each	type	after	the	contact,	but	here	it	is	easier	to	list	the	changes.)

2.4.4	Rules	of	Thumb	for	Qualitatively	Describing	a	Model
The	main	 purpose	 of	 these	 qualitative	 descriptions	 is	 to	 clarify	 and	 organize	 the

biological	processes	 that	you	want	 to	 include	 in	a	model.	How	you	decide	 to	do	 this
(using	a	life-cycle	diagram,	a	flow	diagram,	a	table,	or	some	other	approach)	is	partly	a
matter	of	 taste,	 but	we	 suggest	 the	 following	 rules	of	 thumb.	Life-cycle	diagrams	are
useful	for	discrete-time	models	in	which	more	than	one	event	can	occur	during	a	single
time	step.	Flow	diagrams	are	most	useful	when	 there	are	multiple	variables	 in	either
discrete	or	continuous	time,	although	care	must	be	taken	to	specify	the	order	in	which
arrows	should	be	considered	in	a	discrete-time	model.	Alternatively,	for	discrete-time
models	 with	 multiple	 events	 and	 multiple	 variables,	 a	 table	 of	 events	 is	 often	 the
clearest	way	to	describe	a	model.

2.5	Quantitatively	Describe	the	Biological	System

At	this	point,	we	are	ready	to	derive	dynamical	equations	for	the	model.	Conceptually,
dynamical	 equations	 track	 all	 of	 the	 factors	 that	 cause	 a	 variable	 to	 increase	 or



decrease	over	time	and	have	the	form

For	discrete-time	models,	we	describe	 the	value	of	 the	variable	 in	 the	next	 time	step
using	(2.2a)	or	the	change	in	the	variable	across	the	time	step	using	(2.2b).	If	the	model
involves	multiple	events	per	time	step,	we	must	specify	an	order	to	these	events	(e.g.,
with	 a	 life-cycle	 diagram)	 and	 apply	 (2.2a)	 or	 (2.2b)	 after	 each	 event,	 updating	 the
value	of	the	variable	before	the	next	event.	In	practice,	it	is	often	easiest	to	first	derive
the	recursion	equation	(i.e.,	2.2a)	and	then,	from	this,	construct	the	difference	equation
(i.e.,	2.2b)	 if	desired.	For	continuous-time	models,	 the	procedure	 is	 simpler.	We	sum
all	of	the	factors	causing	the	variable	to	increase	or	decrease,	regardless	of	how	many
events	occur	in	the	model.	In	a	continuous-time	model,	we	do	not	have	to	worry	about
the	order	of	events	within	a	time	step,	because	the	time	step	is	so	small	(infinitesimally
small)	that	no	two	events	occur	at	exactly	the	same	point	in	time.

To	make	this	process	more	concrete,	let	us	derive	dynamical	equations	for	our	toy
models	(Table	2.3).	These	equations	can	be	derived	directly	from	an	understanding	of
the	 models	 or	 with	 the	 aid	 of	 the	 life-cycle	 diagrams,	 flow	 diagrams,	 or	 tables	 of
events.	 Because	 the	 type	 of	 qualitative	 description	 of	 the	model	 usually	 depends	 on
whether	 it	 is	a	discrete-	or	continuous-time	model,	we	will	consider	 these	 two	cases
separately.

TABLE	2.3
Dynamic	 equations	 derived	 in	 this	 chapter.	 Type	 refers	 to	 (1)	 recursion	 equation	 in	 discrete	 time,	 (2)	 difference
equation	in	discrete	time,	and	(3)	differential	equation	in	continuous	time.



2.5.1	Discrete-Time	Models
Let	 us	 start	 with	 the	 simplest	 of	 our	 discrete-time	models,	 the	 branching	model.

This	model	has	a	single	variable	(the	number	of	branches)	and	only	a	single	event	can
happen	during	a	time	step.	Given	the	life-cycle	diagram	in	Figure	2.2a,	we	can	derive
the	recursion	equation	by	specifying	the	number	of	branches	existing	after	the	first	event
(the	branching	event)	occurs.

Recalling	that	b	is	the	number	of	new	branches	that	bud	off	each	old	branch	per	day,
the	 total	 number	 of	 branches	 after	 the	 first	 (and	 only)	 event	 is	 the	 number	 of	 old
branches	plus	the	number	of	new	branches,	or	n′(t)	=	n(t)	+	n(t)	b.	The	next	event	on	the
life-cycle	diagram	is	the	census	at	the	time	t	+	1,	so	that	n(t	+	1)	equals	n′(t).	This	gives
us	the	recursion	equation

From	equation	(2.3a)	we	can	readily	construct	the	difference	equation	by	subtracting	off
the	current	number	of	branches,	n(t):



Equation	(2.3a)	tells	us	the	total	number	of	branches	at	time	t	+	1,	while	equation	(2.3b)
describes	how	many	more	branches	there	are	at	time	t	+	1	than	at	time	t.

Let	 us	 now	 consider	 the	 mouse	 model	 (Figure	 2.2b).	 To	 derive	 the	 recursion
equation	for	this	model	we	work	our	way	around	the	life	cycle,	updating	the	value	of
the	variable	after	each	event.	Following	the	logic	used	in	the	tree	branching	example,
we	have

After	migration,	the	next	event	on	the	life-cycle	diagram	is	the	census	at	the	time	t	+	1,
so	 that	 n(t	 +	 1)	 equals	 n′″(t).	 Plugging	 the	 first	 equation	 for	 n′(t)	 into	 the	 second
equation,	we	get	n″(t)	=	(n(t)	−	d	n(t))	+	b	(n(t)	−	d	n(t)),	which	factors	to	give	n″(t)	=
(1	 +	 b)	 (1	−	 d)	 n(t).	 Plugging	 this	 result	 into	 the	 third	 equation	 gives	 the	 complete
recursion

which	describes	the	number	of	surviving	mice	in	the	yard	on	the	next	day.
Equation	(2.4)	can	be	given	a	relatively	simple	explanation.	A	fraction	d	of	mice

are	eaten	by	the	cat	and	the	remainder	1	−	d	 survive,	 leaving	(1	−	d)n(t)	mice.	Next,
each	surviving	mouse	gives	rise	to	themselves	plus,	on	average,	b	babies,	resulting	in
(1	+	b)	(1	−	d)n(t)	mice.	Finally,	m	new	mice	arrive,	giving	equation	(2.4).

This	general	process	is	summarized	in	Recipe	2.1:

Recipe	2.1
Writing	Recursion	Equations	from	Life-Cycle	Diagrams	(Discrete-Time

Models)
Step	1:	Use	n′(t),	n″(t),	n′″(t),	etc.	 to	denote	the	value	of	 the	variable	after

the	first,	second,	third,	etc.,	event	in	the	life	cycle	and	obtain	recursions



for	these	according	to	equation	(2.2a).
Step	2:	Set	n(t	+	1)	to	the	value	of	n	after	the	final	event	in	the	life	cycle.
Step	 3:	 Substitute	 the	 recursion	 for	 n′(t)	 into	 the	 recursion	 for	 n″(t)	 and

simplify.	Then	substitute	the	recursion	for	n″(t)	into	the	recursion	for	n′″
(t)	and	simplify,	etc.,	until	the	resulting	expression	gives	a	recursion	for
n(t	+	1)	solely	in	terms	of	n(t).

If	you	wish	to	know	the	amount	of	change	over	the	time	step,	the	difference	equation	can
be	derived	using	Recipe	2.2:

Recipe	2.2
Deriving	a	Difference	Equation	from	a	Recursion	Equation
Step	1:	Calculate	n(t	+	1)	using	Recipe	2.1.
Step	 2:	 Subtract	 n(t)	 from	 n(t	 +	 1)	 and	 simplify	 to	 get	 the	 difference

equation,	Δn	=	n(t	+	1)	−	n(t),	describing	the	change	in	the	variable	per
time	step.

For	the	cat	and	mouse	model,	we	get

Taken	together,	these	terms	describe	all	of	the	changes	in	the	mouse	population	per	day.
The	 order	 of	 events	 can	 have	 a	 large	 impact	 on	 the	 predictions	 of	 a	 model.

Consider	a	rather	extreme	case	in	the	mouse	model,	where	the	cat	catches	100%	of	the
mice	(d	=	1),	10%	of	surviving	mice	give	birth	each	day	(b	=	0.1),	and	mice	arrive	in
droves	(m	=	100).	If	we	start	with	one	mouse	(n(0)	=	1)	and	plug	these	numbers	 into
equation	 (2.4),	we	 predict	 100	mice	 after	 one	 day.	 If,	 however,	 predation	 is	 the	 last
event	rather	than	the	first	event	(Figure	2.3),	we	have



and	the	recursion	equation	will	be

Plugging	in	the	same	parameters,	we	now	predict	0	mice	rather	than	100	mice	after	a
day.

Which	is	the	right	answer?	It	depends	on	when	we	count	the	mice,	when	we	let	out
the	cat,	and	when	mice	tend	to	move	about	and	give	birth.	Consider	counting	the	mice	at
noon.	Mice	 tend	 to	be	nocturnal,	and	 it	might	be	 reasonable	 to	assume	 that	 those	 that
migrate	 do	 not	 immediately	 give	 birth	 that	 same	 night.	 If	 the	 cat	 is	 out	 only	 in	 the
afternoon,	 equation	 (2.4)	 is	 a	 reasonable	 approximation	 to	 the	 system	 (afternoon:	 cat
eats;	night:	mice	give	birth	and	then	move	in;	noon:	mice	get	counted).	If	the	cat	is	out
only	in	the	morning,	however,	equation	(2.6)	is	more	appropriate	(night:	mice	give	birth
and	then	move	in;	morning:	cat	eats;	noon:	mice	get	counted).	Indeed,	the	difference	in
the	predicted	number	of	mice	makes	 sense	 even	without	 a	model—if	 you	don’t	want
mice	around	at	your	luncheon,	then	you’d	better	let	the	cat	out	in	the	morning,	not	after
lunch.

The	above	example	is	extreme,	but	it	emphasizes	that	ordering	matters	in	discrete-
time	models,	and	 it	cannot	be	 ignored.	Lest	you	become	too	anxious	about	getting	 the
order	of	events	in	a	model	perfectly	right,	however,	the	order	typically	does	not	have	a
large	effect	as	long	as	little	happens	during	any	given	time	unit	(specifically,	when	each
term	in	 the	difference	equation,	Δn,	 is	small	 relative	 to	n(t)).	 In	 this	case,	 the	 results
depend	less	on	what	 just	happened	within	a	time	unit	(which	will	be	relatively	little)
and	more	on	 the	value	of	 the	variable	 at	 the	beginning	of	 the	 time	 step,	n(t).	 Indeed,
many	 discrete-time	models	 are	 built	 by	 assuming	 that	 every	 change	 to	 the	 variables
depends	 only	 on	 their	 values	 at	 the	 last	 census.	 To	 see	 this	 point,	 try	 comparing
equations	 (2.4)	and	 (2.6)	with	more	moderate	values	of	 the	parameters:	d	=	0.1,	b	 =
0.1,	m	=	1,	and	n(0)	=	10.

Our	flu	model	has	two	variables.	In	Figure	2.2c,	we	drew	a	life-cycle	diagram	for
each	variable.	You	should	try	using	Recipe	2.1	and	Figure	2.2c	to	construct	a	recursion
equation	for	each	of	the	variables.	Here,	we	will	follow	a	different	approach	and	use
the	flow	diagram	in	Figure	2.4c.

Recipe	2.3
Writing	 Recursion	 Equations	 from	 Flow	 Diagrams	 (Discrete-Time

Models)
Step	 1:	 Considering	 each	 solid	 arrow	 in	 turn,	 update	 the	 value	 of	 each

variable	by	taking	its	previous	value



•	plus	the	flow	if	the	arrow	enters	the	circle
•	plus	the	flow	if	the	arrow	leaves	and	returns	to	the	circle
•	minus	the	flow	if	the	arrows	leaves	the	circle.

Step	 2:	 Set	 n(t	 +	 1)	 to	 the	 value	 of	 n	 after	 the	 final	 arrow	 has	 been
considered.

There	 is	 only	 one	 solid	 arrow	 in	 Figure	 2.4c.	 Thus,	 we	 need	 only	 consider	 how	 it
affects	the	number	of	people	with	the	flu	(plus	a	c	n(t)	s(t)	because	the	arrow	enters	the
circle	representing	the	number	of	flu	carriers)

and	the	number	of	susceptible	individuals	(minus	a	c	n(t)	s(t)	because	the	arrow	leaves
the	circle	representing	the	number	of	healthy	individuals)

Alternatively,	 these	 equations	 can	be	 derived	using	 a	 table	 of	 events	 (Table	 2.2),	 by
multiplying	the	number	of	contacts	by	the	change	caused	to	the	number	of	infected	and
susceptible	individuals.

2.5.2	Continuous-Time	Models
For	 continuous-time	 models,	 differential	 equations	 are	 derived	 by	 summing	 the

rates	of	all	changes	that	occur	to	a	variable,	as	described	by	a	flow	diagram.	In	fact,	we
can	 use	 the	 same	 flow	 diagrams	 (Figure	 2.4)	 as	 before,	 remembering	 that	 the	 flows
across	the	arrows	are	now	described	as	rates	and	that	we	don’t	have	to	worry	about	the
order	 of	 events	 (because	 continuous-time	models	 consider	 infinitesimally	 small	 time
intervals,	during	which	two	events	are	unlikely	to	occur	simultaneously:	Box	2.6).

Recipe	2.4:
Writing	 Differential	 Equations	 from	 Flow	 Diagrams	 (Continuous-Time

Models)



For	 the	branching	model	 (Figure	2.4a),	 there	 is	 only	 one	way	 that	 the	 number	 of
branches	changes	(by	the	budding	off	of	new	branches),	and	the	differential	equation	is

The	right-hand	side	is	the	same	as	the	difference	equation	(2.3b)	for	Δn	in	the	discrete-
time	 model.	 This	 makes	 sense	 because	 both	 difference	 equations	 and	 differential
equations	describe	changes	 to	 the	variables.	 In	contrast,	 the	recursion	equation	(2.3a)
also	has	n(t)	on	the	right-hand	side	because	it	describes	the	value	of	the	variable	rather
than	how	it	changes.

As	 mentioned	 above,	 the	 order	 of	 events	 within	 a	 time	 interval	 is	 irrelevant	 in
continuous-time	 models	 because	 the	 change	 per	 time	 interval	 considered	 is
infinitesimally	 small.	 Thus,	 in	 our	mouse	 example	 (Figure	 2.4b),	 we	 do	 not	 have	 to
update	 the	variable	after	each	event,	and	we	can	drop	 the	prime	notation	(n′(t),	etc.).
Applying	Recipe	2.4	to	Figure	2.4b,	the	differential	equation	describing	the	number	of
mice	is	then

whose	 terms	 take	 into	 account	 changes	 due	 to	 births,	 predation,	 and	 immigration,
respectively.	 Now,	 however,	 the	 right-hand	 side	 does	 not	 look	 the	 same	 as	 the
difference	 equation	Δn.	As	 you	may	 have	 surmised,	 the	 reason	 is	 that	 the	 difference
equation	 (2.5)	 allows	 only	 one	 bout	 of	 deaths,	 followed	 by	 births,	 followed	 by
migration,	 whereas	 the	 differential	 equation	 (2.9)	 allows	 these	 events	 to	 occur
continuously	throughout	the	day.

Finally,	 for	 the	flu	model	 (Figure	2.4c),	we	can	apply	Recipe	2.4	 to	 translate	 the
flow	diagram	into	a	pair	of	differential	equations	modeling	the	number	of	people	with
the	flu	and	those	that	are	susceptible:



The	above	three	toy	examples	illustrate	how	flow	diagrams	can	be	used	to	derive
the	 equations	 of	 simple	 models.	 But	 the	 organizational	 techniques	 that	 we	 have
described	 really	 become	 indispensable	when	 constructing	more	 complex	models.	 To
illustrate	 this,	 Boxes	 2.4	 and	 2.5	 derive	 the	 differential	 equations	 used	 in	 the	 HIV
models	 introduced	 in	 Chapter	 1.	 Box	 2.4	 develops	 Phillips’	 (1996)	 model	 for	 the
dynamics	of	HIV	within	an	individual.	Phillips	used	these	equations	to	predict	how	the
numbers	of	virus	particles	within	the	bloodstream	might	change	following	infection	by
HIV.	Box	 2.5	 develops	 the	model	 of	 Blower	 et	 al.	 (2000)	 for	 the	 dynamics	 of	 HIV
spread	among	individuals	within	the	San	Francisco	gay	male	community.	Blower	et	al.
used	 these	equations	 to	predict	 the	effects	of	antiretroviral	 therapies	on	 the	spread	of
HIV	and	on	the	total	rate	of	death	from	AIDS.	While	these	models	are	more	complex
and	 address	more	 important	 biological	 questions,	 the	 steps	 involved	 in	 deriving	 the
models	are	identical	(Box	2.1).

Although	we	 have	 derived	 the	 above	 differential	 equations	with	 the	 aid	 of	 flow
diagrams,	they	can	also	be	derived	directly	from	the	discrete-time	models	by	letting	the
time	 step	 shrink,	 as	 shown	 in	 Box	 2.6.	 Box	 2.6	 also	 sheds	 light	 on	 several	 key
differences	 between	 discrete-	 and	 continuous-time	 models.	 In	 particular,	 Box	 2.6
clarifies	the	meaning	of	rate	parameters	and	why	constraints	on	these	parameters	differ
in	 the	 two	 types	 of	 models.	 Box	 2.6	 also	 provides	 insight	 into	 when	 discrete-and
continuous-time	models	will	exhibit	similar	behavior	and	why	they	need	not.

2.6	Analyze	the	Equations

At	this	point,	we	say	that	our	model	has	been	fully	specified.	We	know	the	variables,
the	type	of	model,	the	parameters,	and	the	equations	describing	changes	in	the	variables
(Table	2.3).	The	next	 step	 is	 to	analyze	 the	model.	There	are	many	different	ways	of
analyzing	equations,	several	of	which	we	will	discuss	in	this	book.	These	include	(in
order	of	increasing	difficulty)

•	Graphical	analyses	(Chapter	4)
•	Simulations	(Chapter	4)
•	Equilibrium	and	stability	analyses	(Chapters	5,	7,	and	8)
•	Deriving	general	solutions	(Chapters	6	and	9)



•	Determining	long-term	or	asymptotic	behavior	(Chapter	10)
•	Analyzing	the	model	for	periodic	behavior	(Chapter	11)

Box	2.4:	Deriving	the	Equations	in	Phillips	(1996)

We	illustrate	Phillips’	(1996)	model	in	the	form	of	a	flow	diagram	(Figure	2.4.1).
The	circles	represent	the	number	of	susceptible	CD4+	cells,	R(t),	 the	number	of
latently	 infected	 cells,	L(t),	 the	 number	 of	 actively	 infected	 cells,	E(t),	 and	 the
number	of	virions	in	the	blood	stream,	V(t).	The	arrows	connecting	these	circles
represent	the	rate	per	day	at	which	one	category	leads	to	another,	where	the	total
flow	rate	is	written	beside	each	arrow.	When	two	arrows	meet,	this	represents	an
interaction	that	must	occur	between	two	categories	to	give	rise	to	another	category
(e.g.,	an	uninfected	cell	must	encounter	a	virus	to	become	infected).

Let	us	walk	through	this	flow	diagram	from	left	to	right.	By	doing	so,	we	are
essentially	describing	all	of	the	assumptions	made	by	Phillips	(1996).	At	a	rate	of
Γ	per	day,	 the	 immune	system	produces	new	uninfected	CD4+	cells,	of	which	a
fraction	 	 become	 susceptible	 to	 attack	 by	 HIV.	 Even	 without	 HIV	 infection,
CD4+	cells	die	or	are	eliminated	from	the	body	at	a	 rate	μ	per	susceptible	cell
per	day,	 leading	 to	 a	 total	 flow	out	of	 the	circle	of	μ	R(t)	 per	 day.	 In	 addition,
susceptible	CD4+	cells	become	infected	if	they	encounter	a	virus.	New	infections
are	assumed	 to	occur	at	 a	 rate	β	V(t)	 per	 susceptible	 cell	 per	day,	 leading	 to	 a
total	 flow	of	β	V(t)	R(t)	per	day.	This	 is	 the	simplest	equation	 that	captures	 the
fact	that	cells	should	become	infected	at	a	faster	rate	if	there	are	more	cells	to	be
infected	 (R(t))	 or	 more	 viruses	 to	 do	 the	 infecting	 (V(t)).	 β	 is	 a	 constant	 that
determines	 whether	 infections	 occur	 slowly	 (low	 β)	 or	 rapidly	 (high	 β);	 it	 is
analogous	to	the	product	of	the	contact	rate	(c)	and	the	probability	of	infection	(a)
in	 the	 flu	 model.	 The	 rate	 of	 new	 infections,	 β	 V(t)	 R(t),	 employs	 the	 “mass-
action”	assumption.

Once	infected,	a	CD4+	cell	may	harbor	HIV	in	a	latent,	nonreplicating	state	or
in	 its	actively	replicating	state;	Phillips	 lets	p	describe	 the	probability	 that	HIV
becomes	 latent	within	a	newly	 infected	cell	so	 that	1	−	p	 is	 the	probability	 that
HIV	becomes	actively	replicating.	Because	HIV	is	hidden	within	 the	genome	of
latently	infected	CD4+	cells,	it	is	assumed	that	these	cells	die	at	the	same	rate	as
uninfected	 cells	 (μ	 per	 cell	 per	 day).	 Latently	 infected	 cells	 may	 also	 be
activated,	 however,	 which	 occurs	 at	 rate	 α	 per	 cell	 per	 day.	 Actively	 infected
CD4+	cells	are	thus	produced	by	two	means:	by	the	immediate	conversion	of	an
uninfected	 cell	 at	 rate	 (1	 −	 p)	 β	 V(t)	 R(t)	 or	 by	 the	 conversion	 of	 a	 latently
infected	cell	at	a	rate	α	L(t).	Actively	infected	cells	die	at	a	much	faster	rate	δ	per
cell	per	day,	due	to	the	continual	budding	of	virus	particles	at	a	rate	π	per	infected



cell	per	day.	(We	use	a	dashed	arrow	between	actively	infected	cells	and	viruses
because	viral	production	by	budding	does	not	directly	eliminate	an	infected	cell.)
Finally,	virus	particles	degrade	or	 are	 eliminated	 from	 the	body	at	 a	 rate	σ	 per
virion	per	day.

Figure	2.4.1:	Flow	diagram	for	viral	load.	The	model	describes	the	number	of	viruses	in	the	blood	stream
after	HIV	infection	(Phillips	1996).

From	 the	 flow	 diagram	 illustrated	 in	 Figure	 2.4.1,	 we	 can	 write	 down
differential	 equations,	 describing	 the	 rate	 of	 change	 of	 each	 variable	 over	 time
(e.g.,	dV(t)/dt	for	the	rate	of	change	of	virus	particles).	Each	variable	represented
by	a	circle	in	Figure	2.4.1	changes	at	a	rate	equal	to	the	sum	of	all	of	the	arrows
entering	the	circle	minus	all	of	the	arrows	exiting	the	circle:

(Technically,	the	rate	at	which	virus	particles	infect	susceptible	cells	should	also
be	subtracted	off	from	dV(t)/dt,	but	this	rate	is	assumed	small	relative	to	the	large
number	 of	 virus	 particles	 in	 the	 bloodstream.)	 These	 equations	 were	 used	 by
Phillips’	 (1996)	 to	 predict	 how	 the	 number	 of	 viral	 particles	 varied	 over	 time
after	initial	infection	with	HIV	(see	Chapter	1	and	Figure	1.5).



Box	2.5:	Deriving	the	Equations	in	Blower	et	al.	(2000)

Blower	et	al.	(2000)	developed	a	model	to	predict	changes	in	HIV	incidence	in
the	 San	 Francisco	 community	 of	 gay	 males.	 The	 authors	 were	 particularly
concerned	that	effective	antiretroviral	therapies	(ART)	might	cause	people	to	be
less	cautious	when	engaging	in	behavior	posing	a	risk	for	HIV	transmission.	Here
we	present	a	slightly	simplified	version	of	their	model	that	ignores	the	evolution
of	HIV	 resistance.	Their	model	 assumes	 that	ART	has	 an	 influence	 on	 survival
rates,	 sexual	 behavior,	 and	 the	 spread	 of	HIV	 among	 gay	men	 that	 are	 sexually
active	within	San	Francisco.	In	particular,	it	assumes	that	the	average	number	of
sexual	 partners	 with	 whom	 an	 HIV	 −	 individual	 has	 unprotected	 sex	 per	 year
increases	from	c	before	ART	to	c(1	+	i).

Figure	2.5.1:	Flow	diagram	for	HIV	and	AIDS	cases.	The	model	describes	the	number	of	cases	of	HIV
and	AIDS	in	the	gay	male	community	of	San	Francisco	(Blower	et	al.	2000).	See	Table	2.5.1	for	further
description	of	the	parameters.

A	flow	diagram	for	the	model	of	Blower	et	al.	(2000)	is	illustrated	in	Figure
2.5.1.	The	circles	represent	the	number	of	uninfected	individuals,	X(t),	the	number
of	 infected	 individuals	 taking	 drug	 therapy,	 YT(t),	 and	 the	 number	 of	 infected



individuals	not	taking	drug	therapy,	YU(t).	The	arrows	represent	the	rate	per	year
at	 which	 one	 category	 leads	 to	 another	 category,	 where	 the	 total	 flow	 rate	 is
written	beside	each	arrow.	When	two	arrows	meet,	this	represents	an	interaction
that	 must	 occur	 between	 two	 categories	 to	 give	 rise	 to	 another	 category	 (e.g.,
between	infected	and	uninfected	individuals).	The	parameters	describing	the	flow
rates	in	Figure	2.5.1	are	defined	in	Table	2.5.1.

From	the	flow	diagram,	we	can	determine	the	rate	of	change	of	each	variable
using	Recipe	2.4:

TABLE	2.5.1
Parameters	 in	HIV/AIDS	model.	 Parameters	 in	 the	model	 predicting	HIV	 incidence	 following	 antiretroviral
therapy	(Blower	et	al.	2000).	All	rates	are	per	year,	and	the	model	assumes	that	changes	to	the	community	are
occurring	continuously.

In	 this	model,	 it	 is	 assumed	 that	 uninfected	 individuals	 engage	 in	 behavior	 that
puts	them	at	risk	of	contracting	HIV	at	a	rate	of	c(1	+	i)	per	uninfected	individual
per	year,	where	i	equals	zero	before	ART	but	rises	to	some	unknown	value	after



ART.	Unlike	 the	 flu	model	 (2.7),	 this	 rate	 is	assumed	 to	be	a	personal	decision
that	does	not	depend	on	the	number	or	density	of	possible	sexual	partners.	That	is,
individuals	don’t	just	bump	into	each	other	randomly	as	assumed	in	a	mass-action
model;	instead	they	actively	seek	out	sexual	partners	at	a	particular	rate	c(1	+	i).
For	 each	 sexual	 contact,	 the	 composition	 of	 the	 population	 determines	 the
probability	 that	 the	 contact	 results	 in	 an	 infection.	At	 time	 t,	 this	 probability	 is
given	 by	 (t)	 (the	 per	 capita	 “force	 of	 infection”),	 which	 incorporates	 the
probability	 that	a	sexual	partner	 is	HIV+	times	 the	probability	of	acquiring	HIV
from	this	partner	during	sex,	β.	Specifically,	if	N(t)	is	the	total	number	of	potential
partners,	N(t)	=	X(t)	YU(t)	+	YT(t),	 then	 the	 probability	 that	 a	 sexual	 partner	 is
HIV+	 but	 not	 undergoing	 treatment	 is	 YU(t)/N(t);	 such	 partners	 tend	 to	 have	 a
higher	transmission	probability	βU.	Similarly,	the	probability	that	a	sexual	partner
is	HIV+	and	undergoing	treatment	is	YT(t)/N(t);	such	partners	tend	to	have	a	lower
transmission	 probability	 βT.	 Accounting	 for	 the	 possibility	 of	 contracting	 HIV
from	either	type	of	individuals,	the	force	of	infection	is

Using	 the	 parameter	 values	 in	 Table	 2.5.1,	 equations	 (2.5.1)	 were	 solved
numerically	to	generate	Figure	1.6	(as	described	in	Chapter	4).

Box	 2.6:	 The	 Relationship	 between	 Discrete-Time	 and	 Continuous-Time
Models

Although	discrete-	 and	 continuous-time	models	 are	 different,	 they	 share	 several
fundamental	similarities.	In	fact,	one	can	derive	a	continuous-time	model	directly
from	a	discrete-time	model	by	shrinking	the	length	of	the	time	unit	down	to	zero.
By	 describing	 this	 procedure,	 we	 gain	 a	 much	 clearer	 understanding	 of	 the
relationship	between	discrete-	and	continuous-time	models.

Consider	the	mouse	model,	which	was	derived	using	a	day	as	the	unit	of	time.
What	would	happen	 in	a	shorter	unit	of	 time,	Δt?	 In	order	 for	 this	procedure	 to
work,	we	have	to	assume	that	the	same	set	of	events	could	occur	in	the	same	order
in	successively	smaller	time	units.	(If	this	does	not	make	biological	sense,	e.g.,	if
migration	only	happens	at	night,	then	we	should	not	use	a	continuous-time	model
to	describe	 the	process.)	 In	 the	mouse	model,	 the	 first	 event	 that	happened	was
that	the	cat	ate	a	fraction	d	of	the	mouse	population.	Now,	in	half	a	day,	we	would
expect	the	cat	to	eat	half	this	amount,	d/2.	In	general,	in	a	shorter	amount	of	time



Δt,	we	would	expect	the	cat	to	eat	a	fraction	d	Δt	of	the	mouse	population.	In	this
procedure,	we	 assume	 that	 d	 retains	 the	 same	 value.	 Nevertheless,	 as	 the	 time
interval	 shrinks,	 it	 is	possible	 for	d	 to	 take	on	 larger	 and	 larger	values	without
depleting	the	entire	population	of	mice.	For	instance,	in	cutting	the	day	in	half,	d/2
is	the	fraction	of	mice	eaten	in	half	a	day,	and	this	must	still	lie	between	zero	and
one.	 Now,	 however,	 d	 can	 lie	 anywhere	 between	 zero	 and	 two.	 Similarly,	 for
smaller	 time	 increments	we	have	 the	 restriction	 that	dΔt	must	 lie	 between	 zero
and	one	and	therefore	that	d	must	lie	between	zero	and	1/Δt.	As	Δt	gets	smaller
and	 smaller,	 the	 maximum	 allowable	 value	 of	 d	 gets	 larger	 and	 larger.	 This
reveals	why	parameters	 that	 describe	 flow	are	 restricted	 to	be	 less	 than	one	 in
discrete-time	models	but	can	have	no	upper	limit	in	continuous-time	models.	The
same	 argument	 applies	 to	 both	 births	 and	 migration	 events,	 of	 which	 we	 now
expect	b	Δt	and	m	Δt	to	occur	in	the	time	unit	Δt.	Thus,	for	a	discrete-time	model
with	time	unit	Δt,	we	would	replace	d,	b,	and	m	in	Figure	2.2b	with	d	Δt,	b	Δt,
and	m	Δt.

We	then	proceed,	event	by	event,	 through	the	 life	cycle,	using	Recipe	2.1	 to
generate	a	recursion	equation:

Now	n′″(t)	is	n(t	+	Δt),	the	number	of	mice	after	the	time	unit,	Δt	has	passed.	By
plugging	 the	 first	 equation	 for	 n′	 into	 the	 second	 equation	 and	 the	 resulting
equation	for	n″(t)	into	the	third	equation,	we	get

Next,	we	 can	use	 the	definition	of	 a	 derivative	 to	 convert	 recursion	 (2.6.1)
into	a	differential	equation	(Box	2.2).	According	to	the	definition	of	a	derivative
(Appendix	2),

Here’s	how	to	read	equation	(2.6.2)	in	words:	the	derivative	of	n	with	respect	to	t
is	defined	 (“≡”)	as	 the	change	 in	n	over	a	 time	 interval	 (that	 is,	n(t	+	Δt)	 n(t))
divided	 by	 the	 length	 of	 the	 time	 interval	 (Δt),	 in	 the	 limit	 as	 the	 time	 interval
shrinks	to	zero	(“limΔ t→0”).

We	begin	the	conversion	process	by	plugging	(2.6.1)	 into	 the	term	in	square



brackets	in	(2.6.2):

Next,	we	let	the	time	interval	Δt	go	to	zero,	which	causes	the	last	term	to	drop	out.
We	are	left	with	the	same	differential	equation	(2.9)	that	we	derived	directly	from
the	 flow	 diagram	 for	 the	 continuous-time	model.	 This	 procedure	works	 for	 any
discrete-time	model	 as	 long	as	 it	 is	 reasonable	 to	 allow	each	event	 to	occur	 in
successively	smaller	periods	of	time	Δt.

As	another	example,	consider	the	discrete-time	flu	model.	In	a	short	amount	of
time	Δt,	we	expect	that	an	infected	person	contacts	any	given	susceptible	person
with	 probability	 c	Δt.	 Therefore,	 the	 total	 number	 of	 contacts	 with	 susceptible
individuals	is	c	Δt	s(t)	per	infected	individual	in	this	short	period	of	time.	Again,
while	the	parameter	c	must	lie	between	zero	and	one	in	the	discrete-time	model,
the	maximum	allowable	value	of	this	parameter	now	increases	without	bound	as
we	 shrink	 the	 time	 interval	Δt	 to	 zero.	Every	 time	 a	 contact	 occurs,	whether	 in
discrete	or	continuous	time,	the	probability	that	the	flu	is	transmitted	to	the	healthy
person	is	a.	Given	that	there	are	n(t)	such	infected	individuals,	we	expect	a	total
number	 of	 new	 flu	 cases	 in	 the	 time	 interval	Δt	 to	 be	 a	 c	 Δt	 n(t)	 s(t).	 Using
Recipe	2.1,	the	number	of	flu	cases	after	an	interval	of	time	Δt	would	be

Plugging	(2.6.4)	into	(2.6.2)	and	taking	the	limit

we	regain	the	differential	equation	(2.10a).
The	 above	 procedure	 illustrates	 that	 the	 way	 in	 which	 we	 scale	 down	 the

flow	 rates	 as	 the	 time	 interval	Δt	 decreases	 determines	 the	 restrictions	 on	 the
parameters	 in	 the	 continuous-time	 models.	 For	 example,	 in	 deriving	 the
continuous-time	 flu	 model	 from	 equation	 (2.6.4),	 we	 saw	 that	 the	 maximum
allowable	value	of	c	increased	to	infinity.	But	the	parameter	a,	which	represents
the	probability	of	transmission	per	contact,	retains	the	restriction	of	having	to	lie
between	zero	and	one	from	the	discrete-time	model	because	we	did	not	scale	this
parameter	at	all	when	shrinking	the	time	interval	Δt	to	zero.

Because	 it	 is	a	considerable	source	of	confusion	for	new	(and	experienced)
modelers,	 it	 is	 also	 worth	 clarifying	 the	 difference	 between	 discrete-	 and
continuous-time	models	 in	 terms	of	 the	units	 of	 the	parameters.	 In	 our	 discrete-



time	 mouse	 model,	 d	 was	 a	 fraction	 (and	 therefore	 was	 constrained	 to	 lie
between	 zero	 and	 one)	 whereas	 such	 parameters	 are	 referred	 to	 as	 rates	 in
continuous-time	models.	 But	 how	 and	 why	 did	 a	 fraction	 become	 a	 rate	 when
moving	 to	 continuous	 time,	 and	what	 is	 the	 relationship	 between	 the	 two?	One
way	 to	 understand	 this	 is	 to	 notice	 that	 the	 fraction	 of	 mice	 eaten	 in	 any	 time
interval	 can	 always	 be	 written	 as	 a	 rate	 of	 consumption	 per	 unit	 time,	 d,
multiplied	by	the	length	of	the	time	interval	in	question,	Δt.	Of	course,	as	we	have
seen,	we	must	ensure	that	d	and	Δt	are	chosen	so	that	d	Δt	lies	between	zero	and
one	because	this	represents	the	fraction	eaten.	In	a	discrete-time	model,	 the	unit
of	time	is	arbitrarily	assigned	the	value	of	Δt	=	1,	so	that	we	can	view	d	as	really
being	 d	Δt,	 where	 d	 remains	 a	 rate	 and	 d	Δt	 remains	 a	 fraction.	 This	 would,
however,	 make	 the	 discrete-time	 equations	 harder	 to	 read,	 so	 that	 it	 is	 much
clearer	to	refer	to	d	Δt	as	simply	d.	In	deriving	the	continuous-time	model,	we	put
Δt	 explicitly	 back	 into	 the	 discrete-time	model.	But	when	we	 applied	 equation
(2.6.2)	to	obtain	a	differential	equation,	we	divided	our	expression	for	the	change
in	 n(t)	 over	 the	 time	 interval	 by	 the	 length	 of	 the	 interval	Δt.	 As	 a	 result,	 the
continuous-time	equations	involve	d	alone	on	the	right-hand	side	of	the	equation
(rather	than	d	Δt),	which	is	a	consumption	rate	 (i.e.,	consumption	per	unit	 time)
rather	than	a	fraction.

Finally,	just	because	we	can	derive	continuous-time	equations	from	discrete-
time	equations	does	not	guarantee	that	they	will	behave	in	the	same	way.	In	fact,
we	will	see	some	spectacular	differences	between	these	two	types	of	models	in
Chapter	4.	By	 deriving	 continuous-time	 equations	 from	 discrete-time	 equations,
however,	we	gain	some	insight	into	when	and	why	the	dynamics	of	these	models
should	 differ.	 In	 the	 above,	we	 shrunk	 the	 time	 interval,	 from	one	 to	 1/2	 to	Δt,
which	we	then	allowed	to	shrink	to	zero.	This	procedure	changes	how	often	the
variables	in	the	model	are	updated,	from	once	to	twice	to	1/Δt	times	per	original
time	unit.	Every	 time	we	update	 the	variables,	we	allow	 the	changes	 that	occur
within	 one	 time	 interval	 to	 impact	 the	 changes	 that	 occur	 within	 the	 next	 time
interval.	 If	 none	 of	 the	 variables	 change	 by	much	within	 one	 unit	 of	 time,	 then
updating	 the	 variables	 will	 make	 little	 difference.	 If,	 however,	 the	 variables
undergo	 large	 changes	within	 a	 time	unit	 (i.e.,	 changes	by	more	 than	 just	 a	 few
percent),	 then	 it	 will	 matter	 whether	 we	 fix	 the	 value	 of	 the	 variables	 to	 their
initial	 values	 within	 a	 time	 unit	 or	 update	 these	 variables	 after	 every	 small
interval	of	time	Δt.	Continuous-time	models	represent	the	extreme	case	where	the
variables	 are	 continuously	 updated	 over	 time.	 We	 will	 return	 to	 this	 issue	 in
Chapters	4	and	6,	but	 for	now	we	conclude	with	 the	 following	 important	point:
The	 behavior	 of	 discrete-time	 and	 continuous-time	 models	 will	 be	 similar	 if
each	variable	changes	little	over	the	time	unit	considered	in	the	discrete-time
model.



When	changes	over	a	time	unit	are	not	small,	all	bets	are	off,	and	the	discrete-
time	 and	 continuous-time	 models	 can	 behave	 quite	 differently.	 In	 this	 case,
discrete-time	models	 are	 also	quite	 sensitive	 to	 the	ordering	of	 events	within	 a
time	unit	 (see	 the	 luncheon	discussion	 in	 section	 2.5.1).	Unless	 there	 is	 a	 good
biological	 reason	 to	 believe	 in	 one	 type	 of	 model	 (discrete-time	 versus
continuous-time)	 and	 one	 type	 of	 ordering,	 then	 you	 should	 be	 careful	 before
placing	 too	much	stock	 in	any	predictions	 from	a	model	 in	which	 large	changes
can	 occur	 over	 a	 time	 unit.	When	 such	 large	 changes	 are	 possible,	 it	might	 be
worthwhile	 deriving	 both	 a	 discrete-time	 and	 a	 continuous-time	 version	 of	 the
model	 to	 see	 how	 sensitive	 the	 results	 are	 to	 the	way	 in	which	 the	 problem	 is
modeled.

If	you	are	 just	 starting	 to	model,	 the	number	of	different	mathematical	 techniques	 that
are	available	is	daunting.	Keep	in	mind	that	even	the	best	mathematicians	do	not	know
them	all.	Any	modeler	knows	only	a	subset	of	possible	techniques.	It	helps	to	remember
this—not	only	because	it’s	easier	to	manage	learning	math	when	you	don’t	feel	that	you
have	to	learn	everything,	but	also	because	it	 is	 important	to	recognize	that	you	should
always	keep	an	eye	out	for	useful	new	techniques	to	add	to	your	mathematical	toolbox.
We	can	always	learn	(and	develop!)	more	techniques.	A	good	idea	is	to	read	papers	in
the	area	that	interests	you	to	decide	which	mathematical	techniques	to	learn	first.	While
no	 one	 person	 can	 master	 all	 mathematical	 techniques,	 knowing	 the	 basic	 steps	 of
modeling	 can	 allow	 you	 to	 collaborate	 effectively	 with	 modelers	 who	 do	 know	 the
techniques	that	you	need.

2.7	Checks	and	Balances

The	 process	 of	mathematical	modeling	 is	 rarely	 smooth.	 Rarely	 does	 the	 first	 set	 of
equations	 that	 you	write	 down	 end	 up	 being	 the	 final	 set.	 Generally,	modeling	 is	 an
iterative	 procedure.	 First	 of	 all,	 everybody	 makes	 mistakes.	 This	 means	 that	 it	 is
critical	 to	 check	 your	 equations	 and	 analyses	 thoroughly	 and	 to	 start	 over	 again
whenever	you	discover	a	mistake.	The	most	obvious	way	 to	check	 for	mistakes	 is	 to
rederive	everything.	Oddly,	many	mistakes	are	not	caught	 this	way,	probably	because
our	minds	are	likely	to	make	the	same	error	twice.	Therefore,	it	 is	a	good	idea	to	get
into	the	habit	of	checking	your	results	using	other	pieces	of	information.

If	there	are	any	constraints	on	the	variables,	make	sure	that	your	results	obey	these
constraints.	 For	 example,	 if	 you	 are	 modeling	 the	 proportion	 of	 females	 within	 a
population	and	the	proportion	of	males,	then	the	sum	of	these	proportions	should	equal
one.	If	you	are	modeling	the	number	of	mice	within	a	population,	you	should	stop	the



model	as	soon	as	the	number	becomes	negative,	which	means	that	the	mice	have	gone
extinct.	 If	 the	 biological	 processes	 considered	 only	 add	 to	 a	 variable,	 that	 variable
should	never	decrease	over	time.

Similarly,	make	sure	that	each	equation	has	the	right	units	or	“dimensionality”—if
you	are	modeling	the	number	of	individuals	in	a	population,	your	answer	should	have
the	dimensions	of	a	number,	not	a	number	squared.	Plus,	the	units	of	the	right-hand	side
of	 an	 equation	 should	 equal	 the	 units	 of	 the	 left-hand	 side.	 For	 example,	 in	 the	 cat-
mouse	model,	equation	(2.4)	has	units	of	number	of	mice	on	the	left,	n(t	+	1).	On	 the
right,	we	have	(1	+	b)	(1	−	d)	n(t)	+	m.	The	term	(1	+	b)	has	units	“number	of	mice	per
mouse.”	The	term	(1	−	d)	measures	the	fraction	of	surviving	mice	and	therefore	has	no
units.	Thus,	(1	+	b)	(1	−	d)	n(t)	correctly	has	units	of	“number	of	mice,”	as	does	m,	the
number	of	(migrant)	individuals.	In	the	flu	model,	equation	(2.7a)	has	units	of	number	of
infected	individuals	on	the	left,	n(t	+	1).	On	the	right,	we	have	n(t)	+	a	c	n(t)	s(t).	The
first	term,	n(t),	has	the	units	“number	of	infected	individuals.”	At	first,	it	might	seem	as
if	the	second	term	a	c	n(t)	s(t),	has	the	dimensions	of	“(number	of	infected	individuals)
×	(number	of	susceptible	individuals)”	because	it	involves	the	product	of	n(t)	and	s(t).
But	 c	 is	 the	 probability	 of	 any	 given	 infected	 individual	 contacting	 a	 susceptible
individual	per	number	of	susceptible	 individuals	 in	 the	population	(see	section	2.4.2)
and	 therefore	 has	 units	 of	 “1/(number	 of	 susceptible	 individuals),”	 while	 a	 is	 a
probability	and	has	no	units.	Thus,	a	c	n(t)	s(t)	also	has	the	units	“number	of	infected
individuals.”

Another	way	to	check	your	results	is	to	look	at	special	cases	where	you	know	what
should	happen.	For	example,	in	the	mice	model,	if	predation	and	immigration	are	absent
(d	=	0	and	m	=	0),	the	equations	should	describe	the	same	growth	process	as	the	tree-
branching	model	(e.g.,	the	recursion	equation	(2.4)	becomes	n(t	+	1)	(1	+	b)	n(t),	which
is	identical	to	equation	(2.3)).	Therefore,	any	results	that	you	obtain	for	the	mice	model
with	d	=	0	and	m	=	0	 should	be	 the	 same	as	 those	 for	 the	branching	model.	Another
good	idea	is	to	check	results	against	simulations,	which	represent	a	special	case	where
all	parameters	and	starting	conditions	are	specified.

Conversely,	you	can	save	a	lot	of	effort	if	you	notice	that	your	model	is	a	special
case	 of	 another	model	 or	 can	 be	written	 in	 the	 same	 form	 as	 another	model.	This	 is
helpful	because	you	can	 then	apply	 the	known	results	of	 the	other	model	 to	your	own
problem.	For	example,	the	equations	for	the	branching	model	have	the	same	form	as	the
equations	 describing	 exponential	 growth	 (Chapter	 3).	 The	 exponential	 growth	model
has	been	well	 studied,	 and	we	know	a	 lot	 about	 its	 behavior.	Realizing	 this,	we	 can
apply	our	knowledge	about	exponential	growth	(e.g.,	Figure	4.1	and	equation	(4.1))	to
our	tree	branching	model.

Finally,	but	most	importantly,	you	should	check	your	results	by	seeing	if	they	make
sense.	What	did	you	expect	 to	happen?	Do	the	results	match	your	expectations?	If	 the
results	match,	 they	 are	more	 likely	 to	 be	 correct.	 If	 they	 don’t	match,	 then	 either	 the



results	 are	wrong	 or	 your	 intuition	 is	wrong.	 If,	 after	 extensive	 checking,	 you	 cannot
find	any	errors	in	the	math,	then	try	to	figure	out	why	your	intuition	was	wrong.	This	is
often	 an	 extremely	 valuable	 exercise,	 allowing	 you	 to	 correct	 and	 refine	 your
understanding	of	the	biological	system.	For	example,	the	results	of	the	model	studied	by
Phillips	(1996)	led	the	research	community	to	reevaluate	what	forces	were	driving	HIV
dynamics	after	infection	(see	Box	2.4	and	section	1.3.1).	Phillips’	model	showed	that	it
was	possible	for	viral	loads	to	rise	rapidly	and	then	decline	without	the	immune	system
kicking	in.	In	hindsight,	this	result	makes	sense,	even	if	it	was	difficult	to	foresee	before
modeling	the	problem.

Another	 reason	why	your	 final	model	might	be	different	 from	 the	 initial	model	 is
that	you	can	get	through	the	entire	process	and	realize	that	your	initial	model	was	too
simple	or	too	complex.	Sometimes,	your	results	will	indicate	that	your	model	was	not
exactly	what	you	intended.	For	example,	because	the	tree-branching	model	has	the	same
solution	 as	 the	 model	 of	 exponential	 growth,	 the	 number	 of	 branches	 will	 grow
exponentially	(see	Figure	4.1).	This	makes	sense,	because	we	did	not	include	anything
in	the	model	to	slow	growth	once	the	tree	gets	large.	Realizing	this,	we	might	want	to
redo	our	model	and	include	the	possibility	that,	as	the	tree	grows,	it	experiences	more
competition	and	shading	from	nearby	branches.	One	way	to	do	this	would	be	to	let	the
growth	 rate	 b	 decline	 as	 the	 number	 of	 branches	 grows.	 We	 shall	 talk	 about	 an
extension	 to	 the	 exponential	 growth	 model	 that	 does	 exactly	 this	 in	 Chapter	 3	 (the
logistic	growth	model).	Similarly,	as	we	have	modeled	the	flu,	susceptible	individuals
get	infected	until	everybody	has	the	flu.	But	in	the	real	world	there	is	never	a	time	when
everybody	 has	 the	 flu,	 because	 people	 recover	 from	 the	 flu	 and	 can	 also	 become
resistant	(see	the	SIR	model	developed	in	Chapter	3).

It	 is	 also	 easy	 to	 make	 your	 initial	 model	 too	 complex	 by	 including	 too	 many
variables	and	parameters.	With	an	overly	complex	model,	you	are	much	more	likely	to
run	 into	 a	 brick	 wall	 in	 the	 analysis.	 Always	 consider	 whether	 every	 variable	 and
parameter	 is	 necessary	 for	 you	 to	 address	 the	 biological	 question.	 Sometimes	 the
answer	will	be	“yes,”	in	which	case	explore	the	model	as	best	you	can.	At	other	times,
certain	details	that,	upon	reflection,	are	less	important	can	be	dropped.	For	example,	in
the	cat	and	mouse	model,	you	might	initially	keep	track	of	both	the	number	of	male	mice
and	 the	number	of	 female	mice.	But	after	 running	some	simulations	of	 the	model,	you
might	 realize	 that	 it	 is	 only	 the	 number	 of	 female	mice	 that	matters	 to	 the	 dynamics,
except	when	there	are	not	enough	males	to	fertilize	the	females.	At	this	point,	you	might
then	 decide	 to	 reduce	 the	 complexity	 of	 the	 model	 (following	 the	 principle	 of
parsimony)	and	focus	only	on	the	total	number	of	female	mice.

Part	of	the	art	of	mathematical	modeling	is	learning	how	models	can	be	simplified.
Sometimes,	 parameters	 can	 be	 grouped	 together	 to	 reduce	 the	 total	 number	 of
parameters	in	a	model.	For	example,	in	the	flu	model	(2.7),	the	contact	rate	c	and	 the
probability	of	infection	per	contact,	a,	always	enter	into	the	equations	as	the	product	a



c.	Thus,	we	can	define	a	new	variable	β	=	a	c,	which	measures	the	infectivity	of	the	flu.
Replacing	a	and	c	with	β	allows	us	to	reduce	the	number	of	parameters	by	one.	Doing
so	 also	 allows	 us	 to	 see	 that	 increasing	 the	 contact	 rate	 or	 the	 probability	 of
transmission	per	contact	should	have	equivalent	effects	on	the	spread	of	the	flu.

It	 is	 also	 sometimes	 possible	 to	 reduce	 the	 number	 of	 variables	 in	 a	model.	 For
example,	 in	 the	 flu	model,	 the	 total	 number	 of	 individuals,	N	 =	n(t)	 +	 s(t),	 remains
constant.	(You	can	show	this	for	the	discrete	model	by	adding	together	n(t	+	1)	+	s(t	+
1)	and	showing	that	the	sum	is	the	same	as	in	the	previous	generation.)	Therefore,	you
can	 rewrite	 equation	 (2.7a)	 by	 substituting	 s(t)	 =	N	 −	 n(t)	 to	 get	 an	 equation	 that
involves	only	one	variable	(n(t)):

Reducing	 the	 number	 of	 parameters	 and	 variables	 makes	 a	 model	 more	 elegant,	 but
more	 importantly	 it	can	make	 the	model	easier	 to	analyze,	as	we	shall	see	 throughout
the	 book.	We	 will	 describe	 some	 methods	 to	 reduce	 the	 number	 of	 parameters	 and
variables	in	a	model	in	Chapter	9.	But	the	best	advice	is	to	keep	an	eye	out	for	features
of	 a	model	 (e.g.,	 that	 the	 number	 of	 individuals	 remains	 constant)	 that	might	 help	 to
describe	a	model	in	the	simplest	and	most	elegant	terms.

2.8	Relate	the	Results	Back	to	the	Question

You	might	be	 tempted	 to	 think	 that	you	are	done	once	you	have	analyzed	your	model.
Modeling	 biological	 processes,	 however,	 is	 worthwhile	 only	 if	 the	 mathematical
results	 are	 related	 back	 to	 biological	 problems.	At	 its	 best,	 theory	 is	 closely	 tied	 to
empirical	 observations	 and	 tests.	 For	 example,	 empirical	 observations	 suggest	 a
theoretical	 model,	 which	 generates	 an	 empirical	 test,	 which	 suggests	 that	 the	 model
needs	to	be	refined	in	particular	ways.	This	interplay	is	extremely	fruitful.

Even	 in	 the	 absence	 of	 such	 a	 tight	 interplay	 between	 modeling	 and	 empirical
research,	it	is	always	desirable	to	go	beyond	the	mathematical	analysis	and	determine
the	 broader	 biological	 insights	 that	 can	 be	 gained.	How	do	 the	 results	 alter	 the	way
scientists	 should	 think	about	 a	problem?	What	predictions	 can	be	made	based	on	 the
model?	What	experiments	could	test	these	predictions?	Are	there	any	data	that	can	be
explained	or	better	understood	in	light	of	the	model?	For	example,	the	models	that	we
described	 in	 the	 last	 chapter	 on	HIV	dynamics	were	 interesting,	 not	 because	 of	 their
mathematical	equations,	but	because	 they	helped	us	better	understand	how	HIV	might
replicate	 and	 spread.	 They	 changed	 the	 way	 we	 thought	 about	 HIV,	 made
counterintuitive	 predictions,	 and	 suggested	 empirical	 tests.	Essentially,	 the	 difference



between	an	important	and	widely	read	model	and	an	irrelevant	and	obscure	model	lies,
not	 in	 the	modeling	 steps	 described	 above,	 but	 in	 this	 final	 step:	 describing	how	 the
model	helps	us	better	understand	and	interpret	the	biological	world	around	us.

2.9	Concluding	Message

In	this	chapter	we	have	introduced	the	process	of	model	construction	by	decomposing
the	task	into	a	series	of	seven	steps	(Box	2.1).	We	have	 illustrated	 these	steps	with	a
series	of	toy	examples	as	well	as	with	models	from	the	literature	on	HIV	described	in
Chapter	1	(Boxes	2.4	and	2.5).	In	the	next	chapter	we	apply	these	same	steps	to	derive
some	classic	models	from	ecology,	evolution,	and	epidemiology.

Problems

Problem	2.1:	 In	 Phillips’	model	 of	HIV	 dynamics	within	 the	 body	 (Box	 2.4),	what	 parameter	would	 you	 alter	 to
incorporate	an	immune	response	to	HIV	particles?	In	three	or	four	sentences,	say	how	you	might	expand	the
model	to	incorporate	this	immune	response.

Problem	2.2:	Ground	squirrels	engage	 in	alarm	calls	 to	alert	 their	 fellow	squirrels	 that	a	predator	may	be	present.
Upon	hearing	a	call,	silent	squirrels	may	start	calling.	Over	time,	calling	squirrels	may	stop	calling	if	the	danger
has	not	materialized.	Draw	a	flow	diagram	with	two	circles	representing	the	number	of	silent	and	calling	ground
squirrels	over	 time.	Place	flow	rates	above	each	arrow	in	your	diagram	and	describe	 in	words	what	 the	flow
represents.

Problem	2.3:	The	genome	of	 any	organism	consists	of	 a	number	of	purine	nucleotides	 (adenine	and	guanine)	 and
pyrimidine	nucleotides	(cytosine	and	thymine).	During	DNA	replication,	however,	mutations	occasionally	occur,
causing	a	purine	to	be	incorrectly	replaced	by	a	pyrimidine	or	vice	versa.	Figure	2.5	illustrates	a	flow	diagram
for	this	mutation	process.

Figure	2.5:	Two-state	mutation	model

(a)	 Based	 on	 the	 flow	 diagram,	 write	 down	 discrete-time	 equations	 for	 the	 number	 of	 purines,	 R(t),	 and
pyrimidines,	Y(t).	 You	 may	 choose	 to	 write	 either	 recursion	 or	 difference	 equations,	 but	 you	 should	 specify
which	type	of	equation	you	have	chosen.	(b)	Write	down	continuous-time	equations	for	the	number	of	purines,
R(t),	and	pyrimidines,	Y(t).

Problem	2.4:	Yeast	and	bacterial	cells	can	be	grown	so	that	they	divide	continually	using	a	“chemostat.”	Chemostats
are	 tanks	 carrying	 a	 complete	medium	with	 all	 of	 the	 sugars	 and	 essential	 elements	 necessary	 for	microbial
growth,	as	illustrated	in	Figure	2.6.	New	medium	is	added	 to	 the	 tank	via	a	constant	drip	 (inflow),	while	used
medium	and	cells	exit	via	an	effluent	 tube	(outflow).	To	model	 the	dynamics	of	a	yeast	population	grown	in	a



chemostat,	(a)	list	all	of	the	variables	that	you	would	want	to	include,	(b)	list	all	of	the	parameters	that	you	think
might	 be	 relevant,	 (c)	 describe	 the	 type	 of	model	 that	 you	 are	 considering	 (discrete	 or	 continuous),	 and	 (d)
specify	any	restrictions	on	the	variables	and	parameters	(e.g.,	x(t)	must	be	positive).	Don’t	 forget	 to	describe
the	 units	 for	 the	 variables	 that	 you	 choose	 (e.g.,	 “number	 of	 individuals”	 or	 “density	 per	milliliter”)	 and	 the
parameters	(e.g.,	“rate	of	loss	per	cell	per	minute”).

Figure	2.6:	Yeast	in	a	chemostat

Problem	2.5:	In	Chapter	8	we	will	analyze	a	model	for	disease	transmission	based	on	the	following	equations:	dS/dt
=	θ	−	d	S	−	β	S	I	+	γ	I	and	dI/dt	=	β	S	I	−	(d	+	v	+	γ)I.	The	variables	S	and	I	denote	the	number	of	susceptible
and	 infected	 individuals.	 (a)	Draw	 and	 label	 a	 flow	 diagram	 for	 these	 two	 variables.	 (b)	 Suggest	 a	 plausible
biological	interpretation	of	the	parameters	γ	and	v.

Problem	 2.6:	 Suppose	 that	 after	 contracting	 the	 flu,	 people	 are	 initially	 resistant	 to	 reinfection,	 but	 this	 immunity
eventually	 wanes.	 (a)	 Alter	 the	 flow	 diagram	 for	 the	 flu	 model	 in	 Figure	 2.4c	 to	 include	 a	 “recovered	 and
immune”	 class	with	 these	properties.	 (b)	Suppose	 that	 immune	 individuals	have	 a	 constant	per	 capita	 rate	of
losing	immunity.	What	are	the	continuous-time	equations	(2.10)	for	this	modified	flu	model?

Problem	 2.7:	 There	 are	 six	 different	 possible	 orderings	 of	 events	 in	 the	 mouse	 model	 of	 the	 text.	 There	 are,
however,	only	 four	different	 recursion	equations,	because	 some	equations	are	compatible	with	more	 than	one
ordering	of	events.	Match	the	orders	of	events	(a)–(f)	to	their	corresponding	recursion	equations	(i)–(iv):

(a)	Census,	births,	predation,	migration
(b)	Census,	births,	migration,	predation				(i)	n(t	+	1)	=	(1	+	b)(n(t)	(1	−	d)	+	m)
(c)	Census,	predation,	births,	migration			(ii)	n(t	+	1)	=	(1	−d)(n(t)	(1	+	b)	+	m)
(d)	Census,	predation,	migration,	births		(iii)	n(t	+	1)	=	(1	−	d)	(1	+	b)	(n(t)	+	m)
(e)	Census,	migration,	births,	predation			(iv)	n(t	+	1)	=	(1	−	d)	(1	+	b)	n(t)	+	m
(f)	Census,	migration,	predation,	births

Problem	2.8:	The	flow	diagram	in	Figure	2.7	might	describe	the	dynamics	of	colonial	animals	(e.g.,	naked	mole	rats)
with	reproductive	 individuals,	nonreproductive	“workers,”	and	a	specialized	group	of	workers	(“soldiers”)	 that
defend	the	colony	and	recruit	new	soldiers	from	among	the	worker	class.	(a)	Infer	which	variables	correspond
to	 the	reproductive	class,	 the	soldier	class,	and	 the	worker	class.	Specify	what	parts	of	 the	flow	diagram	you
used	to	draw	your	inferences.	(b)	Derive	continuous-time	differential	equations	for	the	three	variables	X(t),	Y(t),
and	Z(t).



Figure	2.7:	Class	structure	in	a	naked	mole	rat	colony
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