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It 1s argued that alternate prey species in the diet of a food-limited generalist 
predator should reduce each other’s equilibria1 abundances, whether or not they 
directly compete. Such indirect, interspecific interactions are labeled apparent 
competition. Two examples arc discussed in which an observed pattern of habitat 
segregation was at first interpreted as evidence for direct competition, but later 
interpreted as apparent competition resulting from shared predation. In order 
to study the consequences of predator-mediated apparent competition in 
isolation from other complicating factors, a model community is analyzed in 
which there is no direct interspecific competition among the prey. An explicit 
necessary condition for prey species coexistence is derived for the case of one 
predator feeding on many prey species. This model community has several 
interesting properties: (1) Prey species with high relative values for a parameter 
r/n are “keystone” species in the community; (2) prey species can be excluded 
from the community by “diffuse” apparent competition; (3) large changes in the 
niche breadth of the predator need not correspond fo large changes in predator 
density; (4) the prey trophic level as a whole is regulated by the predator, yet 
each of its constituent species is regulated by both the predator and available 
resources; (5) increased productivity may either increase, decrease, or leave 
unchanged the number of species in the community; (6) a decrease in dcnsity- 
independent mortality may decrease species diversity. The.e conclusions seem 
to be robust fo changes in the prey growth equations and to the incorporation of 
predator satiation. By contrast, adding prey refugia or predator switching to the 
model weakens these conclusions. If the predator can be satiated or switched, 
the elements a,, comprising the community matrix may have signs opposite the 
long-term effect of j upon i. The effect of natural selection upon prey species 
coexistence is discussed. Unless r, , K, , and a, are tightly coupled, natural 
selection within prey species i will tend to decrease the equilibria1 abundance of 
species j. 

INTRODUCTION 

During the past decade the theory of competition has played an increasingly 
important role in both the development of general ecological theory and the 
interpretation of field data. In standard models of interspecific competition, 
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the growth rate of each population is represented by a first-order differential 
(or difference) equation: 

dNi/dt = F,(N, , N, ,..., Ni ,... ). 

Species i and species j are said to compete directly if i3Fi/aNj < 0 and 
aFj/aNi < 0 at equilibrium (May, 1973). The matrix comprised of these 
negative partial derivatives is an important special case of the community 
matrix (sensu May, 1973, p. 22), a construct at the heart of recent theoretical 
discussions of community structure. To connect this body of ecological theory 
to field data, one must measure the elements of the community matrix or at 
least determine their signs. The only direct way to measure these elements is 
to perform perturbation experiments. Indeed, such experiments are the best 
method for demonstrating interspecific competition (e.g., Putwain and Harper, 
1970; Gilpin and Ayala, 1973). 

Unfortunately, few natural communities are suited for this sort of careful, 
manipulative experiment. Hence, ecologists interested in the mechanisms 
regulating community structure have had to resort to a second, more indirect 
kind of evidence for competition. This evidence consists of static patterns 
such as density changes in sympatry compared to allopatry, patterns which can 
be observed in comparative studies or “natural experiments” and are predicted 
from models of interspecific competition (e.g., Schoener, 1974a). 

However, mechanisms other than interspecific competition may also cause 
these static patterns. One mechanism which is likely to be particularly important 
is shared predation. In this paper I argue that in many reasonable circumstances 
a predator necessarily imposes reciprocal equilibria1 abundances upon its 
alternative prey species, even if these species are otherwise independent. To 
distinguish cases in which predation is the cause of these relations from cases 
in which direct competition is to blame, I say that two species are in apparent 
competition whenever the presence of either species leads to a reduced population 
density for the other species at equilibrium. A pair of species may exhibit an 
apparent competition relation because they compete directly, or share a predator, 
or are linked through the food web by some other indirect causal chain. The 
existence of disparate alternative mechanisms that lead to the same ecological 
pattern obviously makes it more difficult to correctly infer the dynamical 
causes underlying observed static patterns. Some ecologists use the word “com- 
petition” in a way which encompasses both direct and apparent competition 
(e.g., Williamson, 1972). Were we to classify interspecific interactions solely 
by effects, rather than by processes, the models of apparent competition discussed 
below could be taken as the machinery of one particular kind of competition. 
But most ecologists seem to use the word “competition” in a more restricted 
sense; typically, the term is used for direct inhibitory interactions or for more 
indirect inhibitory effects arising from the sharing of resources in short supply 
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(e.g., Pianka, 1974; Whittaker, 1975). In this paper I use the unadorned word 
“competition” in this restricted sense and “apparent competition” for other 
kinds of indirect interactions. 

Predator-mediated apparent competition may place constraints on the kind 
and number of prey species which can coexist in a predator’s diet. These 
constraints may be as important in the determination of community structure 
as those constraints which arise from resource competition. For a particular 
predator-prey model, I first discuss the explicit conditions which allow new 
prey species to pack into the community, and then apply these conditions to 
species diversity patterns and a discussion of evolution in predator-prey com- 
munities. (Throughout this paper I use the term “species diversity” in the 
loose sense of “number of species.“) I also discuss some ways of changing the 
assumptions of the model, and I examine the effects of these changes upon 
apparent competition among prey in the diet of a single predator. 

In all the models discussed in this paper, alternate prey species do not compete 
in the absence of the predator. There are two reasons for making this assumption. 
First, by studying the separate effects of competition and predator-mediated 
apparent competition, we may be led to a fuller understanding of those situations 
in which both are acting. In another paper I will discuss models that include 
both; the addition of direct competition does not change my conclusions in any 
essential way. Second, there may be natural communities in which competition 
is relatively unimportant. The protozoan communities studied by Addicott 
(1974) seem to be one example. Guilds of host-specific insects may provide 
others. Models of apparent competition could provide important tools for 
understanding the structure of such communities. 

COMPETITION, OR APPARENT COMPETITION? 

Consider a community consisting of a predator, with density P, and its two 
prey species, with densities R, and R, , respectively. The two prey species 
may or may not directly compete. I assume that the population growth of each 
species can be characterized by a differential equation: 

dR,ldt = F,(R, , R, , P), i= 1,2 

dP/dt = F(R, , R, , P). 

Given an explicit form for each of these three equations, we could solve for 
the population densities at equilibrium and test the stability character of each 
solution. As noted above, the two prey species compete directly if both aF,/aR, 
and aF,/aR, are negative. But even if these derivatives are not negative, the 
presence of either species may reduce the other’s equilibria1 density. If the 
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predator is strictly food-limited and is not self-damped, its per-capita growth 
rate can be written as follows: 

1 dP 
- - = F,(R1 , R,). P dt (3) 

F,(& , R,) combines the functional and numerical responses of the predator. 
At equilibrium,l 

F,(R,*, R,“) = 0. 

For any given F, , this equation implicitly relates the equilibria1 densities of 
the two prey species and thereby describes the set of all possible equilibria1 
prey communities. Of course, the one that actually occurs, if any, also depends 
upon the dynamics of each prey species and the stability character of each 
solution. Nonetheless, without explicitly considering Fl or F, , from the form 
of F, alone we may make a general assertion about the net effect of one prey 
species upon another’s equilibria1 density. I now argue that at equilibrium the 
alternate prey species of most food-limited predators should exhibit apparent 
competition. 

By the chain rule of differentiation2 at the zero isocline 

8F 8F dR 2+2>= dR, 8F,laRl 
a& aR, dR, 

0 or 
dR, = - aF,IBR, i 1 ’ (5) 

dR,/dR, is always negative if both aF,jaR, and 8F,I%R2 are positive; dR,/dR, 
is positive only if aF,/aR, or aF,/aR2 is negative. The latter is likely only if 
the predator is rather pathological. If aF,/aRi < 0, then the introduction of a 
small quantity of additional prey to the community induces a negative growth 
rate for the predator-an incremental increase in its food acts like a poison! 
Such a predator is clearly mal-adapted to the prey it eats. In this paper the 
only F, functions discussed satisfy the following condition: 

aF,IBR, 3 0, Vi, (6) 

all along the zero isocline (e.g., lines 1 through 3 in Fig. 1). So far as I am 
aware all of the equations which have ever been proposed for predator popula- 
tion growth satisfy this condition. There may be circumstances in which it is 
reasonable to expect isoclines violating (6), in which case the arguments in this 
paper will not apply. 

1 Asterisks denote equilibria1 values. 
2 I thank S. Levin for suggesting the use of the chain rule to demonstrate the main 

result. 
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FIG. 1. The zero isoclines of five food-limited predators (F(Ri*, R,*) = 0). When 
prey densities are in the region between an isocline and the origin, the population of the 
predator declines in density; when prey densities are outside the isocline, the predator 
increases in density. Isoclines 1 through 3 satisfy condition (6). Along these isoclines, an 
increase in RI* necessarily canses a decrease in R,*. 

Hence, as long as iJF,/aR, > 0 along the line F,(R,*, R2*) = 0, the two 
species of prey will always appear to compete at equilibrium whether they 
compete directly, or do not. (The direct interspecific effects 8F,/i?R, and aF,/aR, 
may be negative, zero or even positive.) If the predator can stably coexist 
with either prey species 1 or 2 alone (species 1 and 2 allopatric), or with both 
(species 1 and 2 sympatric), then each prey will show a reduced density in 
sympatry as compared with allopatry. Were one unaware of the importance of 
the shared predator, it would be easy-but wrong-to ascribe this pattern of 
reduced densities to direct competitive interactions between the two species. 

We can generalize our conclusion to include communities comprised of a 
food-limited predator and its 11 prey species. The predator’s per-capita growth 
rate is (1 /P)(dP/dt) = F,(R, , R, , . . . , R,). (Ri is the density of prey species i.) 
At equilibrium, F,(R,*, R,* ,..., R,“) = 0. By the chain rule, at the zero isocline 

If aF,/aR, > 0, then at least one of the terms aR,/aR, must be negative. 
The basic mechanism of predator-mediated apparent competition is quite 

simple. Feeding on only a single prey type, a food-limited predator is maintained 
at a certain equilibria1 density, as is the prey. The introduction of a second prey 
species increases the density of the predator; the original prey suffers heavier 
levels of predation because of the increased density of predators and equilibrates 
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at a lower density. The equilibria1 density of a food-limited predator is in 
large part determined by the demographic properties of its prey. Prey with 

different intrinsic demographic properties should differentially affect predator 

density, and indirectly limit each other’s densities. 
The notion that species “compete” by sharing a predator has had a long 

history. As early as 1925, Lotka discussed the one-predator two-prey species 
case (Lotka, 1925, p. 94). Williamson (1957) Huffaker (1966), and Huflaker 
and Laing (1972) have provided statements of the basic idea, and MacArthur 

(1969a,b, 1972) Leigh (1971), Levin (1970), May (1971), Barbehenn (1969), 
Janzen (1973) and Poole (1974) mention (usually for special cases) what I am 
calling apparent competition in predator-prey communities. Yet, while a rich 
theory of community structure has developed around the idea of resource 
competition, and the documentation of resource partitioning has proceeded 
apace, little attention has been directed to predator-mediated apparent compe- 
tition by either theoretical or field ecologists. 

I know of two cases in which habitat exclusion was observed, explained at 
first as an outcome of resource competition, but later explained as the result 
of shared predation; there may be other cases of which I am unaware. 

The first could be called “The Case of the Missing Hares.” An important 
source of indirect evidence for competition has been the study of habitat expan- 
sions and contractions of species on islands as compared with the same species 
on mainland areas. Before the introduction of the showshoe hare (&pus 
americanus) onto Newfoundland, the arctic hare (Lepus arcticus) occupied not 
only tundra-its normal habitat on the mainland-but also many wooded 
areas (Cameron, 1958). Since the introduction of the snowshoe hare, the arctic 
hare has contracted its habitat and is now found only near boulder fields in 
the tundra. MacArthur (1968) has used this situation as an example of evidence 
for competition. But Bergerud (1967) h as suggested that increased lynx preda- 
tion may better explain the habitat contraction of the arctic hare. Subsequent 
to the introduction of snowshoe hares, the lynx population greatly increased. 
Bergerud believes that the defense tactics employed by the arctic hare may 
make it a particularly vulnerable target. The introduction of an abundant, 
alternate food source-the snowshoe hare-may have greatly increased the 
density of lynx; the arctic hare may have been eaten out of the wooded portions 
of its range. Thus, one hare may have excluded the other by means of a predator 
feeding on both. Since all of the available evidence is circumstantial, it is 
impossible to dismiss out of hand the possibility of direct competition, too. 
(Grant, 1972, has also discussed this example.) 

Large and small zooplankton species often show disjunct distributions. In 
1965, Brooks and Dodson proposed a twofold explanation for this distributional 
pattern. They suggested that fish or other vertebrate predators selectively 
devour large zooplankters, leaving the lake to small ones. But if these predators 
are absent, Brooks and Dodson reasoned, the greater feeding efficiency of 
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large species relative to small species should lead to the competitive exclusion 
of the latter by the former. 

Dodson later showed that the disjunct distribution of two species of Daphniu 
was not due to direct competitive exclusion (Dodson, 1974). The smaller of 
the two species, D. minnehaha, thrived when caged in ponds populated by the 
larger D. middendor-ana. These experiments demonstrated that interspecific 
competition was either weak or absent. The predatory copepod Diaptomus 
shoshone also occurs in these ponds. Dodson found that it feeds most effectively 
on prey in the size range of D. minnehaha, but does consume small individuals 
of the larger species. He suggests that the predator excludes D. minnehaha 
from small ponds, thereby causing a pattern of apparent competitive exclusion. 
Although Dodson does not discuss the possibility, it may be true that the two 
prey species are indirectly interacting even if they are not competing for 
resources-by contributing to the support of the predator population, the less 
preferred of the two prey species may be implicated in the exclusion of its 
congener. 

In both of the above examples, one can interpret an observed pattern of 
habitat exclusion as being due to either resource competition or a shared predator. 
To decide which is the more reasonable explanation, one probably should carry 
out field experiments (as did Dodson) and explicitly try to refute one of the two 
hypotheses. 

LIMITS TO SPECIES PACKING IN PREY COMMUNITIES 

Ecologists have recently become concerned with the impact of predators 
and parasites on the realized niches of prey and host species (for reviews see 
Colwell and Fuentes, 1975, and Connell, 1975). A predator specialized to a 
single species of prey may drastically restrict the range of habitats occupied 
by that prey. A classic example is the habitat restriction of the Klamath weed 
(Hypericum perforatum) forced upon it by the herbivory of Chrysolina beetles 
(HufIaker, 1957). In the two examples discussed above, the distribution of a 
single species of prey was probably determined by a generalized predator. The 
impact of a generalist upon a single species of its prey, however, should depend 
upon the properties of other species in the generalist’s diet. In this section 
I discuss the way a generalized predator structures a model prey community 
in the absence of interspecific resource competition. I begin with a derivation 
of a necessary condition for the existence of any given prey species in the 
community; this condition is a function of properties of all the other prey species 
in the predator’s diet. 

The model is one invented by MacArthur (1969b, 1970, 1972) to analyze 
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resource competition within a guild of predators. The equations are as follows: 

predator: 

prey: 

L dp = B [C aibiRi - c] ; 
P dt 2 

1 dR, -- 
R, dt 

= rk - 5 R, - a,P, 
Kk (9) 

where 

P = the population density of the predator, 

Ri = the population density of prey species i, 

a, = the per-predator per-unit prey rate of encountering and capturing 
prey species i, 

bi =: the caloric value of a captured individual of species i, 

B = a conversion factor relating the energetic intake of the predator 
to its birth rate, 

C = the energetic cost of maintenance and replacement, 

r - the intrinsic rate of growth of prey species k, k- 

Kk = the carrying capacity of prey species k. 

It is assumed that in the absence of the predator each prey species subsists 
on its own resource base and, when alone, obeys a logistic growth equation. 
The predator’s expected rate of energy intake depends upon both the rate at 
which prey are encountered and captured, and the caloric value of each capture. 
(This rate is xi a&R, .) Density-independent mortality is incorporated as part 
of the parameter C. The per-capita growth rate of the predator is proportional 
to its net rate of energy intake. The parameter ai need not be a constant. It may, 
for example, vary with changes in prey density. In this section, however, 
I assume that ai is a species-specific constant. 

At equilibrium, the predator constrains the prey populations, causing them 
to lie along the hyperplane C a,biRi * = C. The population density of prey 
species k is 

C 
R,* =-- 

‘d’, c-- 
a,bf Rj*, 

j+k ‘d’k 
(10) 

which has the linear form characteristic of competition equations at equilibrium: 

Nk* = K - c akiNi*. 
f#k 

(11) 
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P, * is the equilibria1 density of the Kth competitor, Kk is its carrying capacity, 
and 0~~~ is the competition coefficient.) The ratio a,bJa,b, seems analogous to 
the competition coefficient olki . 

The linear form of Eqs. (8) and (9) facilitates solving for prey density. At 
equilibrium, the density of prey species k is 

C - $ [($-j ~~ (1 - *j\ 4, 
R,* = 

1+ f (&)($g)(+-j 
j+R I 

(12) 

Despite its inelegance, this expression has several virtues: (1) It implicitly 
contains the positivity conditions for the one-predator n-prey species com- 
munity; (2) it allows an explicit analysis of the effect evolution in one species 
has on the densities of the other species. (The stability character of the point 
equilibria given by Eqs. (12) and (14) is discussed in Appendix I.) 

As is intuitively reasonable, species with equal ri , Ki , ai = a, and bi s b 
have the same density at equilibrium; when there are n such species, 
R,* == (l/n)(C/ab). In this special case there is no intrinsic limit to the number 
of coexisting prey species, except the limit set by the stochastic extinction of 
small populations for large n (or moderate n and small Club). If only Ki varies 
among the species, then from (12) the density of species k is R,* = 
(K& K,)(C/ab). The predator just rescales prey densities, without changing 
their pattern of relative abundance. 

More generally, we expect species to differ in their values for yi , ai , and bi . 
From (12), species k will be present in positive numbers only if 

The existence of a particular species in the community is independent of its 
own K yet may critically depend upon the Ki of other species in the predator’s 
diet. 

These positivity conditions can be put into a form with more biological 
meaning. Solving for rJak , we find that species k will be present only if 

zizI, ajbiKj - C 

CM aj2bjKj,rj ’ (14) 

The right-hand side of this expression is the equilibria1 density of the predator 
in the absence of prey species k. Call P* evaluated in the absence of species k, 
Pk*. The positivity condition (13) may now be written as rk > akPk*. But this 
is just the condition that must be satisfied if species k is to invade the equilibrium 
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community consisting of the predator and the other prey species. Hence, the 
positivity conditions are also conditions for invading the community. This 
interpretation of (13) is reminiscent of one interpretation of positivity conditions 
in n-species Lotka-Volterra competition communities (see Strobeck, 1973). 

Condition (13) is always satisfied if, for each choice of j, the term 
(1 - (u~/~~)(Y~~/u~)) is negative or zero. This occurs if, for each j, v,Jak .> rj/a, . 
The prey species with the highest relative value for the ratio YJCI‘ is certain to 
be present in the equilibria1 community. The fate of species with lower values 
for Yi/ui is less certain. 

A species with lower yi/ai coexists with the species with highest rja only if 

The permissible dissimilarity in the two species’ relative abilities to withstand 
predation (r/a) is set by C/(u,b,Kr)-th e e ur 1 rmm density of species 1, q ‘l’b 
expressed as a fraction of its carrying capacity. A prey species with a high 
relative value for Y/U is a “keystone” species in the community (sense Paine, 
1969), inasmuch as its properties both control the density of the predator and 
restrict the range of parameters open to other prey. 

Given a particular distribution of the parameters of the model among a 
number of prey species, by substituting into (13) we can determine which 
combinations of species are compatible. The species can be ranked in order of 
decreasing ri/ui and labeled according to rank order. A species can coexist with 
species 1 (the species with the highest rJaJ if (15) holds; perforce, it can live 
with any other single species of lower rank order. Nonetheless, this species 
can be excluded from the full community (see Fig. 2). This is a “diffuse” form 
of apparent competitive exclusion. If a predator is found to exclude a given 
species from a habitat, it may not be possible to attribute that exclusion to a 
single, particularly prolific prey species-to some extent, all the species in the 
predator’s diet will be to blame. 

The permissible variance in r/a decreases as the number of species in the 
diet increases. As one example of this general phenomenon (Fig. 2 depicts 
another), consider a community in which all species but one have the same values 
for ri , I& , etc., and the nonidentical species has a lower value for Y/U. From (14) 
it can be seen that this species invades the community only if 

z > 5 [l - (3 T] = P*(n). (16) 

As n increases, it becomes increasingly unlikely that species with ylc/ulc < r/u 
will be able to invade. A similar result holds if species have different values for 
their growth parameters. 
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The expression for P*(n) has an interesting property. For 8 greater than some 
moderate value, the density of the predator is almost independent of its niche 
breadth. Two widely used measures of niche breadth B are 

log B = - Cpi logpi and B= ’ 
z 

tip? ’ 

in which pi is the proportion of the diet comprised by resource i. For either 
measure, if n resources are equally abundant, then B = n. If prey species all 
have the same values for ri, Kf , etc., all have the same equilibria1 abundance. 

hij 

0.5 

0 I 
I 2 3 4 5 

&al bl 

FIG. 2. Parameter spaces allowing invasion into the community (X,, = (r,/q)/(rJaJ. 
K,a,b, is plotted in units of C. Line 1 plots the minimum value of &r satisfying (12). 
Species 2 cannot invade if the combination of parameters is to the right of line 1. A third 
species can invade if (1’) C > a,b,K,(l - (aJrJ(r,/a,)) + azbzKz(l - (az/r.&r,/a,)). For 
example, if h,, = 0.75 and alb,K, = azb2Kz , the minimum value of X,, allowing invasion 
is shown by line 2. A third prey species with haI in the cross-hatched region can exist 
with either 1 or 2, but not with 1 and 2 together. 

For example, if (C/&)/K = 0.5, then changing from a diet with n = 10 to a diet 
with n = 1000 increases P* by less than 5%. The reason for this phenomenon 
is that when feeding on a large number of species our generalized predator 
overexploits them all and restricts the total productivity of its food supply. 

In this model community high species diversity may be permitted for two 
reasons: (I) All the prey may have very similar abilities to withstand predation 
-the ratio ri,/ai s the same constant for all of the species; (2) if there is a high 
variance in ri/ai , species with high relative values for ri/ai must have quite low 
absolute values for Ki or 6, . 

Gilpin (1975a) has noted that in randomly constructed real matrices 
(including a large number of predator-prey interactions), an increase in the 
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number of species decreases the likelihood that a randomly chosen set of param- 
eters leads to a community with all species present in positive numbers. The 
above results, based on standard ecological equations, are a particular instance 
of this general phenomenon. 

This analysis may clarify some issues arising out of the controversy between 
Hairston et al. (1960) and their critics, Murdoch (1966) and Ehrlich and Birch 
(1967). These authors present arguments and counter-arguments about the 
regulation of whole trophic levels, as well as arguments about the regulation 
of single populations. In the predator-prey community characterized by (8) 
and (9), it is clear that the prey trophic level as a z&role is predator-limited, 
since at equilibrium z:i aibiR, * =: C. If sib, L=. ab, then the total density of 
prey is a constant: xi Ri* : Cjab. If a,b, varies, xi R,* varies from C/max(aib,) 
to C/min(aJ,). Yet as long as there is more than one prey species present, it is 
simultaneously true that each species is food-limited, too. The carrying capacity 
of species k enters into the denominator of the solution for R,* (see (12)). 
If this species has the highest value for r/a, then changing Ki,. from close to 
zero to a very large number, all the while keeping the other species the same, 
changes Rk* from almost zero to C/(a,b,). Thus, increasing the resources 
available to species K increases its density. 

The model displays some of the ambiguities inherent in “limiting factor” 
terminology. At any point in phase space, the per-capita growth rate of species i 
depends only upon Ri , P, and the parameters ri and Ki . But the equilibrium 
density of species i depends upon the entire suite of parameters characterizing 
the community. Parameters which control the instantaneous growth rate of a 
prey species may be irrelevant to the determination of its equilibria1 density 
(e.g., any common multiple of the intrinsic rates of growth), whereas factors 
not in its growth equation at all may nonetheless set its density (e.g., other 
species’ values for KJ. To understand what controls a species’ density, one 
must take care to examine the entire community in which that species is 
embedded. 

It may be necessary to develop a broad understanding of entire predator- 
prey communities if we are to arrive at optimal solutions to some applied 
ecological problems. For example, one may want to know whether or not a 
specialist is preferable to a generalist as a control agent for agricultural pests 
(Huffaker et al., 1969). One’s decision depends upon the characteristics of 
alternate prey which may be available to the predator. By manipulating the 
alternate prey, one may be able to greatly reduce the density of the pest. Putnam 
and Herne (1966) argued that the phytoseiid Typhlodromus caudigzans maintained 
a low endemic density of the pestiferous mite Panonychus ulmi in peach orchards, 
even though T. caudigzans largely subsisted on other sources of food. Since 
alternate prey can increase the density of TyphZodromus (Collyer, 1964), this 
appears to be an example of pest control maintained by apparent competition 
among prey species. 
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PREDATION AND SPECIES DIVERSITY PATTERNS 

The study of species diversity patterns is an active area of ecological research. 
It has often been argued that when productivity is high (Connell and Orias, 
1964), or when the environment is stable or “benign” (Sanders, 1969), species 
diversity will be high. In the predator-prey community characterized by (5) 
and (6), however, an increase in productivity or “benignness” over ecological 
time may cause a decrease in species diversity. 

Imagine that at one time several prey species coexist in a predator’s diet. 
If we know how changes in ri and Ki reflect changes in given environmental 
parameters, we can predict changes in the structure of the community from (9); 
we can determine whether a rise in productivity or decrease in stressful circum- 
stances relaxes apparent competition, or increases its severity. 

First, assume that, in the absence of the predator, saturation densities (K) 
are set by intraspecific inhibitory activities, such as aggressive interactions and 
the accumulation of metabolic wastes. An increase in productivity will not 
strongly affect & but may change ri . Since the intrinsic growth rates ri control 
densities as ratios ri/rj , any increase in productivity which multiplies each ri 
by the same constant will not affect prey abundance or change the invasibility 
conditions. Or, an increase in productivity may add the same amount to each ri , 
in which case (Y~/u~)/(Y~/u& approaches uJui. If uk m ui, the increase in 
productivity makes the community more invasible. 

Now, assume that, in the absence of the predator, saturation densities are 
controlled by the availability of food resources, but ri is fixed. An increase in 
productivity increases Ki . Multiplying each Ki by the same constant decreases 
the abundance of species with low relative r/u. As the general economy improves, 
“the rich get richer, and the poor get poorer.” Leigh (1971) and Levin (1970) 
have also pointed out that when food sources are superabundant (i.e., Ki --+ co 
VJ, only one species of prey can persist in a predator’s diet. Thus, an increase 
in productivity may either increase diversity or decrease diversity, depending 
upon how productivity affects growth rates. 

Presumably, to say that habitat A is harsher than habitat B is to claim that 
density-independent mortality is higher in A than in B. Density-independent 
mortality is a component in both r and C. If conditions become more “benign,” 
r is increased and C is decreased. A lower C leads to a higher predator density. 
Hence, prey species with low r/u may become extinct when their habitat becomes 
more benign, and species diversity may decrease. (This point is developed more 
fully in Appendix II.) This decrease is a multispecies analog of Volterra’s 
“third law” for predator-prey systems. This “law’‘-“The Law of the Distur- 
bance of Averages”-states that “if the mortality of both predator and prey 
are increased [decreased] simultaneously, by some other factor acting on both, 
then the number of prey will increase [decrease], but those of the predator 
will decrease [increase]” (Williamson, 1972). In the absence of interspecific 
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competition among the prey in a predator’s diet, any environmental change 
increasing the density of the predator may decrease prey species diversity. 

OTHER POSSIBLE WORLDS 

In this section I discuss the sensitivity of my conclusions to changes in some 
of the restrictive assumptions built into Eqs. (8) and (9). Three categories of 
reasonable modifications are briefly explored: (1) changes in the assumptions 
about prey dynamics; (2) changes in the trophic interaction; (3) changes in the 
factors limiting the predator. As is argued below, incorporating the third kind 
of modification into the model may drastically alter the interprey interactions. 
By contrast, adding the first two types of changes seems to modify only the 
details of apparent competition among prey. I do not discuss other important 
assumptions in the model-the lack of spatial or temporal heterogeneity, age 
structure, etc.-but I do have one programmatic suggestion for ecologists 
interested in predator-prey models. For each new wrinkle added to a predator- 
prey model, it seems a worthwhile goal to try to understand the impact of that 
change upon the conditions for prey species’ coexistence. Like null hypotheses, 
the expression for equilibrium density (12) and the criterion for species packing 
(13) can serve as yardsticks with which we can gauge the significance of each 
novel twist in the model. 

(i) Prey dynamics. It was assumed that prey populations followed 
logistic growth equations in the absence of the predator. Relaxing this assump- 
tion does not seem to greatly affect the qualitative conclusions drawn from the 
model. Let Eq. (8) describe the predator’s growth rate, and write the per-capita 
growth rate of prey species i as follows: 

1 dRi 
R< dt 

= F,(R,) - a,P. 

For F,(R,) to be a reasonable model of population growth, F,(R,) must be 
bounded, and there must be a maximum R, (call it I?J above which Fi is zero 
or negative. Assume that aFi/aRi < 0 between 0 and l?<. This implies that 
the maximum value of F,(R,) occurs at Ri =: 0. Let Fz(0) = Fi . At equilibrium, 
P* = Fi(Ri*)/a, . Species i will be present only if Fi(Rj*) - a,P* = 0 for a 
positive value for Ri*. By assumption, Pi > Fi(Rf*) for R,* > 0. Species i 
can be present only if 

Since ai is assumed to be a constant, if we decrease Ri* from K, to 0 (say by 
decreasing C), P* monotonically increases from 0 to ?Jaj . Hence, the maximum 
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possible value for P* is rnaxi(fi ui) ( maxi ranges over all species in the predator’s 
diet). Species K can invade if rk - a,P,* > 0, which is assured if Pk/ak > 
maxiib(fJai). This demonstrates that that prey species with largest fJai will 
surely be present in the community. By contrast, if Fi/ui < Yk/uk , species i 
may be excluded from the community. R,* may vary from 0 to C/u,b, . The 
minimum density for the predator feeding on species k is 

Substituting from (18), we arrive at a necessary condition for the inclusion of 
species i in the community: 

(20) 

When there are three or more prey species, “diffuse” apparent competition 
makes coexistence more difficult than would be predicted from expression (20). 
If an increase in environmental productivity increases F,(R,) for Ri > 0, but 
does not increase Pi , some prey species may become extinct. For n prey species 
with identicalF,(R,) = F(R), R,*(n) = (I/n)(C/ub) and P*(n) =F((l/n) C/ub)/u. 

aP* aP* aR -c aF 
an = TR- . an =-->o, n2u2b aR 

since aFji?R < 0. The sensitivity of the predator’s density to changes in its 
niche breadth should tend to decrease as n increases. 

Some species reach their maximum per-capita growth rates at densities 
greater than zero: 3FJ3Ri > 0 for 0 < Ri < & < Ki , and i3FJaRi < 0 for 
& < Ri < Ki . Watt (1968) d’ iscusses several examples of populations with 
“Allee-type” growth rates, and Rosenzweig (1969) has argued that “humped” 
F,(R,) should be common in nature. With such prey species, alternate non- 
invasible communities become possible. 

Consider two prey species with identical growth curves: F,(R,) = F,(R,) 
whenever R, = R, = R. Figure 3 depicts the zero isoclines of both species 
and the predator for two possible examples of humped F(R) curves. If 
a, = a2 = a and b, = b, = 6, then the equilibria1 densities of species 1 and the 
predator are R,* = Club and P* = F(R,*)/u. In the examples drawn in Fig. 3, 
P* > i/a. This implies that species 2 cannot invade the community. Since in 
these examples the identity of the original prey species does not matter in the 
determination of P*, there can be at least two alternate noninvasible com- 
munities. For either curve in the figure, the community comprised of the 
predator and one-prey species is stable (see Appendix I). For F’, the three- 
species community is also locally stable. Thus, if the per-capita growth rate 

653/1212-7 
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FIG. 3. Apparent competitive exclusion between prey species with identical growth 
curves. The vertical line F, is the zero isocline of the predator. F and F’ are two different 
prey isoclines. The intersection of F, with F or F’ gives the equilibria1 densities of both 
species. If two prey species are present, H,* = (O.S)(C/ab). For F’ at this density, 
ZJF’/aR, ( 0. (See text for further explanation.) 

falls off rapidly at low densities-as does F/-there may be three alternate 
communities. Similarly, we might expect a large number of possible alternate 
communities if the predator is feeding on n prey species with humped F,(R,). 
Several ecologists have emphasized the likelihood of multiple stable states in 
communities (e.g., Levin, 1973). Sutherland (1974) has argued that historical 
events may critically determine the structure of natural communities. If prey 
often have Allee-type growth curves, we should expect sequences of colonization 
to determine the composition of particular prey communities. 

(ii) The trophic interaction. I have been assuming both that the per- 
capita predation rate (--a$) is independent of prey density, and that the 
per-capita growth rate of the predator is a linear function of prey densities. 
Neither assumption is true if prey have refuges from predation, or if predators 
exhibit complex functional responses to changes in prey density. In the following 
paragraphs I outline several ways in which the addition of these touches of 
realism to Eqs. (8) and (9) might modify my earlier conclusions. 

Refuges may affect the structure of prey communities in several ways. For 
example, individual prey may enter and leave refuges at a constant per-individual 
rate, thereby ensuring the safety of a constant fraction of the population at any 
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one time. The larger is this fraction, the lower will be the parameter ai . Thus, 
the model can directly incorporate temporary refuges. 

Alternatively, a constant number of individuals may live in refuges. If each 
prey species in the community has its own refuge, then the shared predator 
can never cause the extinction of any one of them. In such a community, 
constraints on growth curves (e.g., inequality (13)) are not likely to be important 
determinants of community structure. The crucial proviso here is that each 
prey species have a refuge. If some species have refuges and others do not, the 
“haves” may exclude the “have-riots.” This can be demonstrated with a simple 
modification of Eqs. (8) and (9). Assume that iii is the maximum number of 
individuals in species i able to live in refuges free from predation; the predator 
must subsist on the surplus Ei above & . Thus, Ri = fii f Ei , Ri > I?; 
Ri = Ri , Ri < Ri . & ranges from 0 to Ki - & . Equation (8) for the predator 
becomes 

dP/‘dt x BP [x a,b,Ei - C], 
i 

whereas the growth equation for prey species i may be written 

dR- 2 = Ri 
dt 

I, - j$ Ri) - aiEiP. 
L 

(21) 

In Eqs. (21) and (22), the parameter ai is to be interpreted as the per-predator, 
per-unit prey rate of capture of individuals in the surplus population Ei . If, 
for all i, Ri > 0, apparent competition will be expressed only through changes 
in Ei*. 

Assume that there are only two prey species, and that in the absence of 
refuges species 1 excludes species 2: 

Moreover, assume that species 2 has a refuge protecting l& individuals, and 
that species 1 does not have a refuge. At equilibrium, (i) a,blRl* + a,b,E,* = C; 
(ii) r, - (r,/K,) RI* - a,P* = 0; and (iii) R,*(Y, - (y,/KJ R,*) - a,E,*P* _ 0. 
From (iii), for P* > 0, then E, * > 0. With (i) this implies that RI* < C/a,b, . 
Species 1 is excluded if y,/al < PI*, in which case Ez* = C/a,b, . But from (iii) 

The last expression can be made greater than any given rl/al if K, is large 
relative to (R + (C/a,b,)) and C/a,b, is small enough. From the above analysis 
we can draw two conslusions: (1) If a prey species is in the community by 
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virtue of its refuge from predation, and & < Ki , then its presence will decrease 
the density of other prey species; (2) refuges may reverse dominance in apparent 
competition relations between prey species. 

If species 1 has a refuge, and species 2 does not, the condition for coexistence 
is 

Figure 4 compares (23) to (15), th e condition for coexistence in the absence 
of a refuge. It is straightforward to show that if C/a,b, > (0.5) Ki , coexistence 
is made easier by the presence of the refuge, whereas if C/a,b, < (0.5) K, , 
coexistence is more difficult for small l?r . In Fig. 4b, along a gradient in fir , 

,751 

IO b 

.75 
f\-- 

FIG. 4. Refuges and apparent competition. In both (a) and (b) the straight line is the 
lowest permissible value for A,, (see Fig. 2) with C/a,b, = 0.75 K, in (a) and = 0.25 K, 
in (b). The curved lines are plots of minimum A,, as a function of 8, , from inequality (23). 
Species 2 cannot invade if its value of rz/az leads to a A,, below these curves. In (a), refuges 
for species 1 always relax apparent competiton. But when predation is more intense, 
on species 1, as in (b), refuges may make invasion more difficult. For low fi, refuges allow 
the predator density to remain high despite the high rate of exploitation of accessible prey. 

species 2 may be present at both ends of the gradient yet absent in the middle. 
Clearly, wherever refuges from predation are present, one cannot use (13) to 
make accurate predictions about the structure of the prey community. Instead, 
one must know the distribution of both refuges and population growth param- 
eters among the members of the community. 

In the analysis of Eqs. (8) and (9) I assumed that ai was independent of prey 
density. This is not true if predators can be satiated or can switch. Introducing 
predator satiation (&zJaR,, < 0; Holling’s Type 2 response) seems to affect the 
details of prey community structure without greatly changing its qualitative 
features, at least when a stable point equilibrium exists. The reason is that in 
a food-limited species no individual will be very satiated at equilibrium. Hence, 
predator satiation should not greatly affect the relations between prey species. 
This conclusion can be borne out by analyzing predator-prey equations that 
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explicitly include satiation. Let hj be the time required to attack, to capture, 
and to consume an individual of species j, and let aj’ be the per-individual, 
per-unit search time rate of capture by a predator. The number of individuals 
of j captured per-unit time is nj = Rjaj’( 1 - z:i nJz<). This expression leads to 
the following equation for the rate of growth of the predator: 

1dP B 
[ 

xi a,‘b,R, --z 
P dt 1 + -& a,‘hiRi - ’ I 

(modified from Maynard Smith, 1975). At equilibrium, 

R,* = 
c 

+‘(b, - C&J 

(24) 

Prey mortality is a function of the densities of all the species in the predator’s 
diet: 

1 dR, 
R,dt=rk 3 - g R, - U,(R, , R, ,...) P, 

where a,(R, , R, ,...) = ah/(1 + xi ai’hiRi). 0 ver short time periods these prey 
species exhibit mutualism: aF,/aR, > 0 and aFjIaRi > 0. At equilibrium, 
however, the numerical response of the predator imposes apparent competition 
relations among its prey-as long as bi > Ch, for all i. It can be shown that this 
is assured if we require that aF,/aR, > 0, Vi. (The latter requirement picks out 
diets that are identical to the diets predicted from optimal diet models (Holt, 
in preparation).) A reviewer has pointed out that the functional response built 
into (24) and (26) tends to destabilize this system. The above remarks apply to 
point equilibria; I do not know what happens when the system exhibits more 
complex behavior. 

If predators concentrate their attention on whichever prey species is tem- 
porarily most abundant, and ignore rare species, no prey can be excluded from 
the equilibrium community. A predator is said to “switch” if it alters its attack 
parameters ai concordant with changes in the relative frequency of species i. 
There is a burgeoning literature on switching (e.g., Krebs, 1974; Murdoch 
and Oaten, 1975); here I can touch on only a few facets of this complex 

Ph enomenon. 
It is clear that condition (13) is irrelevant to the determination of com- 

munity structure if rare prey are not being preyed upon at all, i.e., 
lim R.+O a,(R, , R, ,...) = 0. If a predator switches, then 

aa,laR, 2 0 and aUi/aRk < o (i # k). (27) 

After a change in prey density, apredator behaving adaptively should change 
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its attack parameters a,(& , R 2 ,...) only if, in so doing, its rate of energy intake 
is increased, or at the very least not decreased. From (6) and (8), 

If lim R,+O uli = 0 and aarl%RI, is bounded, then at R, = 0, inequality (28) 
becomes 

c b,R, j$ 2 0. 
ifk’ k 

The two inequalities (27) and (29) are jointly satisfied if, and only if, 

k Rk=o 

(29) 

Using this criterion we can reject certain functional forms for ai(R, , R, ,...). 
For example, if ai’ and 2 are both positive constants, the functional response 
a,(R, , R2 ,...) =- ai’(RJz Rj)z violates (30). Hence, predators with this func- 
tional response are exhibiting mal-adaptive behavior. 

Smith (1972) has argued that in spatially heterogeneous system the proba- 
bility of capture per-unit prey item should decrease as the density of prey 
decreases, so that the last few individuals are nearly free of predation. One way 
to model this effect near equilibrium is to let a,(R,) be a linear function of prey 
densities: 

ai E: ui’Ri . (31) 

No prey species can be directly excluded from the community. Nonetheless, 
alternate prey may exhibit strong apparent competition relations. For example, 
if there are just two prey species, by substituting the identity (31) into Eqs. (8) 
and (9) and solving for RI* it can be shown that 8R,*/3K, < 0 and %A,*/&, < 0. 
If both K, and K, are very large, a,’ = a2’, and b, := b, , then 

The equilibria1 density of species 1 is in part determined by the demographic 
properties of species 2. 

(iii) Mechanisms regulating predutor density. Predator-mediated apparent 
competition will be relaxed by any ecological factor that restricts the predator 
to an equilibria1 density below the density set by its available food. For example, 
intraspecific interference may depress the predator’s density. If predators 
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interact whenever they meet, and each individual loses an amount of energy I 
at each encounter, the per-capita growth rate of the predator declines as P 
increases. This may be represented in the growth equation as follows: 

$$B [-pz,bjR,-cCIP]. , (32) 

MacArthur (1970) briefly discussed this equation. He pointed out that near 
equilibrium the prey equations resemble competition equations “in which the 
best competitor is the one which can withstand the greatest predator pressure.” 
As interference intensifies, apparent competition among the prey is relaxed. 
There may be yet other types of interference that more sharply restrict the 
importance of apparent competition. 

By embedding the predator-prey model of (8) and (9) in a more complex 
food web model, one may drastically alter the relations among the prey. For 
instance, consider a community in which the predator is itself the sole prey 
of a higher-order food-limited predator. The simplest way to modify the 
original model so as to include this predator is to add a mortality term to (8), 

1 g = B [I a,b,R, - c] - a’P’, 
Pdt , 

and incorporate an equation for the higher-order predator: 

1 dP’ 
P’ dt 

= B’[a’b’P - C’]. 

At equilibrium, P* is constrained to the density C’ja’b’. If the a, are constant 
coefficients, the prey equations are decoupled. Prey species i can invade if 
ri - (C’/a’b’) > 0. 

An increase in productivity or a decrease in density-independent mortality 
should ease the difficulties of invasion, as well as increasing the equilibria1 
density of those prey species already present. These effects are opposite those 
expected in the absence of the higher-order predator. If the lower-level predator 
may be sated, or switches, its prey will exhibit “apparent mutualism” at equi- 
librium. 

Some ecologists have suggested that all (-, -) relations between species 
should be labeled “competition,” all (+, -) relations “predation,” all (+, +) 
relations “mutualism,” and so forth (e.g., Odum, 1959). This classificatory 
scheme seems inappropriate when the relationship is imposed, as it were, by 
the structure of the food web. As was noted in the introduction, the elements 
aij = aF,/aR, making up the community matrix embody all the direct pairwise 
interactions occurring in a community at equilibrium. In multispecies com- 
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munity models, however, the sign of aij may bear little relation to the nef 
effect of species j upon species i at equilibrium; the latter reflects the structure 
of the entire community. This is particularly clear when ail = 0. Figure 5 
depicts several examples. Closed circles in the figure represent populations with 
self-regulation (ai, < 0); open circles are species with a,, -- 0. If aij is nonzero, 
an arrow is drawn from species j to species i. In Fig. 5a, species 4 increases the 

FIG. 5. Indirect interactions in complex food webs. The sign beside each arrow is 

the sign of aij For the examples discussed in the text, the sign of the net effect of i upon j 

is the same as the sign of (ak,alk ... ~~~a,~). (Jeffries, 1974, and Levins, 1975,‘discuss other 

uses of food web diagrams in ecological theory.) L?il 

density of species 3, thereby decreasing species 2 and indirectly increasing I. 
Species 1 maintains species 2 and indirectly augments the numbers of species 3, 
thus decreasing the density of species 4. Species 1 and 4 have a (+, -) relation, 
yet it is misleading to call this indirect interaction “predation”; I suggest that 
such indirect (+, -) relations are better termed “apparent predation.” In like 
manner, species 1 and 2 in Fig. 5b may be said to exhibit “apparent symbiosis.” 
Species 1 and 2 in Fig. 5c provide a baroque example of “apparent competition.” 
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Levins’ technique of “loop analysis” (Levins, 1975) may prove to be a useful 
tool for the elucidation of indirect interactions in complex communities. 

The distinction between “direct competition” and “apparent competition” 
is closely related to a distinction between two time scales-on the one hand, 
the characteristic time required for growth rates to respond to changes in 
density, and, on the other hand, the time required for the full system to equili- 
brate subsequent to the addition of a new species. If the latter is much greater 
than the former, indirect interactions filtered through long chains in the food 
web may be washed out in the noise of environmental fluctuations. An important 
task for future work is to investigate the relation between models of direct 
interactions and apparent interactions arising in multispecies communities. 
For some purposes it may be legitimate to mimic the indirect interaction between 
two species with a model in which the two directly interact. 

EVOLUTION AND APPARENT COMPETITION AMONG PREY 

Does natural selection within a prey species sharpen the difficulties of prey 
species’ coexistence, or does natural selection tend to relax apparent competition 
among prey ? Until there is a more intimate relation between population ecology 
and population genetics than exists today there can be no satisfactory answer 
to this question. Conceptually, the simplest way to wed ecology with genetics is, 
first, to assume that genetic variants are expressed only through their effect on 
parameters entering into the per-capita growth equation (l), and then, to 
assert that a rare genetic variant which increases an arbitrary parameter czi will 
be selected only if 

(Rosenzweig, 1972; Levins, 1975). (This may be made more rigorous if one 
identifies per-capita growth rates with the absolute selective values of alternate 
alleles at a single locus (e.g., Roughgarden, 1971; Gilpin, 1975a,b).) In this 
section (33) is used to develop a feeling for the community-level effect of selection 
on the parameters of Eqs. (8) and (9). Evaluating aRj*/hi will allow us to 
ascertain the impact of selection in species i upon the density of species j. 

If ri , Ki, and ai are not coupled (i.e., %,/a& = 0, etc.), then, from Eq. (9): 
iiF,/&, > 0, aF,/aKi > 0, and aFi/aai < 0. Natural selection in species i 
should increase ri and Ki , and decrease ai . (If the first two possibilities are 
referred to as Y- or K-selection (Roughgarden, 1971), perhaps the third could 
be called “a-selection.“) Rosenzweig (1972) h as argued that the equilibria1 
population density of a prey species does rrot reflect selection within that species 
to increase either its intrinsic rate of growth or its carrying capacity. In like 
manner, Levins (1975) has stated that “species populations just below the top 
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of the trophic structure will increase only by selecting for predator avoidance.” 
This conclusion critically depends upon an implicit assumption made by these 
authors-that the predator has but a single species of prey in its diet. If there 
are two or more species sharing the predator, by differentiating Eq. (I 2) it can 
be seen that %R,*/arf > 0, aRi*/aK, > 0, and %Ri*/ilai < 0. 

Both aRj*/ari < 0 and FRj*/aK, < 0 (i #j). Hence, selection acting on 
either yi or Ki makes the coexistence of prey species more difficult. But 
“a-selection” has a more ambiguous effect. It is well known that the yield 
from an exploited population decreases when the cropping rate increases 
beyond a certain level (see, e.g., Watt, 1968). The predator density is set by 
the equilibria1 yield from its prey; if the predator begins to overexploit its prey, 
the predator’s density will decline. Conversely, the predator’s density may 
increase if its overexploited prey is selected to lower aj . From (14), 

if (0.5) ri < a$*. (34) 

Prey species i is being overexploited if predation upon it consumes more than 
half of its intrinsic rate of increase. In the regime of overexploitation (expres- 
sion (34)), natural selection within species i to decrease ai increases the predator’s 
density (ZJP*/+aJ > 0) and sharpens the impact of species i upon species j. 

Figure 6 shows a hypothetical example of this effect. The predator consumes 

0 .25 .5 .75 IO 

FIG. 6. RI* and Hz* as functions of a,. The lines marked RI and R, are Eq. (12) 
with az = 1; lines RI’ and R,’ were computed with al =: 0.5. The minimum value for 
R,* is reached when RI* : 0.5K. 

two prey species which have the same values for yi , Ki , and bj . It is imagined 
that prey species 1 evolves so as to decrease ai , whereas the predator and 
species 2 do not change. In Fig. 6, Ri* is shown as a function of a, , with 
C/b = (0.25) K. The solid lines are R,* and A,* for a, -== 1; the dotted lines 
give equilibria1 densities for a2 L= 0.5. A d ecrease in a, increases the predator 
density as long as RI* < (0.5) K. At a, == 0.25, the density of species 2 is less 
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than half of what it would be in the absence of species 1. Pet at this value for 
a1 , the predator cannot subsist on species 1 alone (see Fig. 7). This illustrates 
how those prey species to which the predator is poorly adapted (low ai) may 
be critical determinants of prey community structure. 

The above conclusions seem to hold for the more general class of predator- 
prey models comprised of Eqs. (8) and (17). An increase in the productivity of 

species i (F,(R,)) increases the equilibria1 density of the predator, thereby 

FIG. 7. The equilibria1 density of the predator as a function of the parameter a. Both 
curves are drawn from Eq. (16) with C/b = 0.25K. The upper curve may represent 
either the predator’s density when a second prey species is present, or the effect of doubling 
K or halving C when only a single prey species is present. 

increasing predation upon other prey species. From Eq. (17), F,(R,*) = a$*. 
As ai increases, Ri* decreases. But F,(R,) is bounded, so that as ai grows larger 
P* must eventually begin to decrease with increasing ai . In these regimes of 
overexploitation, selection that lowers ai increases apparent competitive pres- 
sures between prey species. 

When ri , Ki , and ui are uncoupled, natural selection within one prey species 
will often make prey species coexistence more difficult. In general, we expect 
these parameters to be coupled. There are two distinct reasons for this expecta- 
tion. First, in attempting to build up single-species population models from 
explicit biological assumptions, one often finds that the same parameters enter 
into the expressions for saturation density and intrinsic rate of growth 
(T. Schoener, personal communication), usually leading to a positive correlation 
between the two quantities. 

A second, more biological reason for expecting negative correlations among 
ri , Ki , and a, stems from “The Principle of Allocation.” One argues that an 
organism has a certain amount of time and energy at its disposal which it must 
divide among several disparate activities; moreover, an organism can increase 
its effectiveness at one endeavor, such as escaping predators, only at the expense 
of its abilities in other activities. A detailed appraisal of the effect of natural 
selection upon apparent competition depends upon a knowledge of the intrinsic 
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functional relationships between parameters. Over evolutionary time the struc- 
ture of the prey community will be molded by the detailed form of these func- 
tional relationships. For example, imagine that prey species can be ordered 
along a single phenotypic axis .a and that ai is a function of x. Examples of such 
axes might be body size, body shading, or the position of hiding places along 
an environmental gradient. Consider a predator that is most adept at a single 
point D along the z-axis and that becomes less proficient as 1 zi ~ f : increases, 
as in Fig. 8. At time 0, prey species 1 is imagined to be characterized by zi --: f 

FIG. 8. Character divergence and apparent competitive exclusion. If z1 and z2 are 
located between the shaded regions of the axis, there is an excluded zone E centered at h. 
This zone reaches its maximum extent at a(zJ = 0.25. The same will be true if z1 and z, 
are congruent on one side of 9. (See the text for further explanation.) 

and species 2 by aa > f. For simplicity, we assume that a(z) is symmetrical 
around ,G and that at any given time the two prey species have the same values 
for a, , Ki , and bi This implies that 1 zi - 2 1 = 1 za - f j. Natural selection 
should cause this species pair to diverge away from 1. We would like to under- 
stand the significance of this divergence for a third prey species with an inter- 
mediate phenotype, ai < z3 < z2 . 

If ai is functionally related to ri and Ki , it should be possible to write 
the growth parameters as functions of Z. The dashed lines in Fig. 8 represent 
two possible forms for ri(x), assumed to be the same for all three prey species. 
For a flat r(z) (line 1 in the figure), species 3 is excluded if 1 < u(za) P*. 
P* evaluated from Eq. (16) (with 7~ = 2) is shown as a function of a mZ u(zJ = 
a(~~) in Fig. 7. Setting C/b = (0.25) K( as in Fig. 7), a third species with za = f 
(u(S) = 1) is excluded if 0.15 < a < 0.8. P* reaches its maximum at a = 0.25; 
for this value of a the third prey species can be present only if u(zJ < 0.5. 
Hence, when zi and z2 are at the positions shown in the figure, a third species 
with Z, between Z’ and a” will be excluded from the community. The excluded 
zone E rapidly decreases as a declines below 0.25. In this hypothetical example, 
the effects of apparent competition are maximal at intermediate levels of character 
divergence. This conclusion does not hold if the prey can never be overexploited, 
or if Y(Z) has the form of line 2 in the figure. For example, if C/b := K, or 

u(Z) = 0.25, P* declines monotonically as zi and z2 move apart. Similarly, if ri 
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declines with ai so that yi/ui is nearly constant for all values of z (line 2 in Fig. 8), 
P* decreases as / z1 - za / increases. Prey species can be packed all along the 
phenotypic axis if the predator is ineffective-low a(S) and high C compared 
to bK-or if yi and a, are strongly correlated. 

Several ecologists have suggested that prey species “compete” for “escape 
space” or color patterns and that this “competition” leads to gaps between 
species’ characters (Richlefs and O’Rourke, 1975; Gilbert and Singer, 1975). 
As mechanisms for such “competition,” these authors discuss only apostatic 
selection due to switching predators able to form search images. The situation 
depicted in Fig. 8 provides another mechanism for producing gaps between 
the characters exhibited by alternate prey. 

Of course, to understand fully the effects of selection upon apparent compe- 
tition, we would have to analyze evolutionary changes in the predator, too. As 
prey species lower their respective values for a, , the predator is expected to 
respond by shifting 2 or modifying the shape of a(z). The community-level 
effects of these evolutionary changes should depend upon the interplay of 
demographic parameters such as C, B, and the ai (Eq. (8)). Prey species which 
diverged so that &~~/%a, < 0 could force their predator to become more 
specialized. Since the predator should be selected to increase ai only if 
Cj bj&*(&zj/&z,) > 0, the predator will tend to specialize on prey with high 
relative values for yi and Ki , thus sparing rarer prey species. I suggest that if 
we are to develop a deep understanding of the relation between coevolution and 
community ecology, we must develop our evolutionary arguments in the 
context of explicit population dynamic models. If we do not, the implications 
of selection on particular traits (e.g., ui) may be equivocal; a single selective 
event may have qualitatively different effects in two different communities. 

CONCLUSION 

Ecologists have begun to explore the interplay of predation and competition 
in the determination of community structure (Schoener, 1974b). Often, it has 
been argued that predation relaxes competitive pressures by reducing the 
density of competing prey species, thereby allowing a much higher species 
diversity than is possible in predator-free communities (Paine, 1966; Harper, 
1969; Connell, 1970; but see Cramer and May, 1971). Recently, these verbal 
arguments have been sharpened into explicit analyses of limiting similarity in 
guilds of competing species cropped by predators (May, 1974; Roughgarden 
and Feldman, 1975). These works implicitly or explicitly compare conditions 
for coexistence in communities zuitlz a predator to conditions for coexistence 
in the same communities without a predator. 

By contrast, in this paper I have deliberately explored the implications of 
models in which direct competition is absent; whatever the resource base, it was 
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assumed to be perfectly partitioned among the species of prey. I have compared 
the equilibria1 states of model communities which differ only in the composition 
of their prey “guilds.” In these model communities, apparent competition 
alone structures relations among the prey. The conditions for coexistence 
depend upon the degree to which each species limits its own growth (K), as 
well as the ability of each species to transform resources into offspring (Y) and 
to escape the predator (u). I have argued that the conditions for coexistence 
become more stringent, the more productive or less harsh is the environment, 
or the more diverse is the prey community. Since there is always some inter- 
specific variance in parameters such as Y, K, and a, there may be a limit to the 
number of prey species which can coexist in the diet of a food-limited predator. 

There may be some natural communities in which direct competition is 
weak or entirely absent and in which apparent competition plays a primary 
role in the structure of the community. But in most natural communities, the 
realized patterns of abundance probably reflect both direct and apparent 
competition. When a particular community is investigated, one should be 
aware of the possible importance of both mechanisms. For example, it may be 
true that a generalized predator permits the coexistence of pair of competitively 
incompatible species, yet simultaneously it may be true that each species of 
prey would be better off were it alone in the predator’s diet. These two, distinct 
effects of shared predation may both be important. Apparent competition may 
play an important and as yet poorly recognized role in natural communities. 

APPENDIX I 

This paper has explored some features of the “comparative statics” of 
predator-prey models. But discussing the properties of point equilibria 
may be misleading if the equilibria are dynamically unstable. The following 
result from the theory of qualitative stability allows a rapid assessment of the 
stability character of several of the models herein discussed (Jeffries, 1974). 
Recall that aij == (8Fi/ZVj)*. Th e asymptotic stability of the community is 
assured if the following five conditions are jointly satisfied: (i) a,, < 0 for all i; 
(ii) aijaji < 0 for all i + j; (iii) a&, ... aa,ari = 0 for three or more distinct 
indices; (iv) det{+} = 0 ({a& s the matrix comprised of elements uii in row i 
and column j); (v) the community “fails” a “color test.” Jeffries (1974) details 
condition (v); there is no need to discuss it here, for it is satisfied by all the 
models discussed in this paper. 

For Eqs. (8) and (9) it is apparent that conditions (i), (ii), and (iii) all hold. 
Det(aij} is proportional to the equilibria1 densities of all the prey, and is nonzero 
if P* and each Ri* are positive. If all the species can be present in positive 
densities, we can conclude that the equilibria1 community is locally stable. 
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From expression (14), P* > 0 if xi a&J& > C-the condition which must be 
satisfied if the predator is to invade the predator-free community. 

Given that the predator and all its n prey species can coexist, all of the possible 
equilibria on “edges” (one or more population at zero density) are unstable. 
Let PC... denote the predator’s density in the absence of species i, species j,... . 
Since R,* > 0, yi/ui > P*. Manipulating the expression for P*, it can be 
shown that P* > Pi*. Consider a community in which only species k is absent. 

Since for all i, rijai > P” > P,“, all the remaining n - 1 prey species have 
positive densities; it follows that ri]ui > P$ and Pk* > Pti . Iterating, we 
find that rlz/ak > Pk* > Pzj > ‘.’ . Species k can invade all equilibria1 com- 
munities from which it is absent. Since k was arbitrary, all the “edge” equilibria 
are unstable. 

Assuming only that bi = b and that the positivity conditions are satisfied, 
Aiken and Lapidus (1973) have constructed a Lyapunov function for Eqs. (8) 
and (9). For this important special case of the model the point equilibrium is 
globally stable. Using an expression derived by Aiken and Lapidus, we find 
that for n prey species with equal ri , Ki , and ai a small disturbance will return 
halfway to equilibrium in a time t ==- n(2Kb/r). A s iversity increases, the ability d’ 
of the community to withstand disturbance decreases. This is reminiscent of 
the general theme that increased diversity tends to decrease stability (May, 1973). 

Several other predator-prey models discussed in this paper are qualitatively 
stable. The model made up of Eqs. (8) and (17) is stable, as are the models 
incorporating refuges (Eqs. (21) and (22)), interference (Eq. (31)), or the 
higher-level predator. By contrast, models in which the prey curve has a “hump” 
or in which the predator satiates need not be locally stable. 

APPENDIX II 

To examine the effect of changes in density-independent mortality, we must 
re-parameterize the model. Following Wilson and Bossert (1971), let the per- 
capita birth rate of prey species i be given by bi - k,,R, , the per-capita death 
rate by di + kdiRi + a,P, and the predator’s cost of maintenance and replace- 
ment by M + D. 1M reflects maintenance costs, and D is the per-capita death 
rate of the predator. The per-capita growth rate of prey species i may be written 

’ dRi = (bi - k,iRi) - (di + k,iR, + u~P). 3; dt (‘9 

In the absence of the predator, Eq. (A) reduces to a logistic equation in which 

ri s bi - di and 
bi - di 

Ki = kdi + kbi . 
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A pair of prey species whose growth parameters are the same, except for b, , 
can coexist if 

b -b 2/l- 

A uniform decrease in density-independent mortality decreases D, shrinking 
the permissible difference between b, and b 2 ; prey species with low per-capita 
birth rates may become extinct as a result of decreased density-independent 
mortality. 
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