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Abstract 

A scientific understanding of the biological world arises when ideas about how nature works are 

formalized, tested, refined, and then tested again. Although the benefits of feedback between 

theoretical and empirical research is widely acknowledged by ecologists, this link is still not as 

strong as it could be in ecological research. This is in part because theory, particularly when 

expressed mathematically, can feel inaccessible to empiricists who may have little formal 

training in advanced math. To address this persistent barrier, we provide a general and accessible 

guide that covers the basic, step-by-step process of how to approach, understand, and use 

ecological theory in empirical work. We first give an overview of how and why mathematical 

theory is created, then outline four specific ways to use both mathematical and verbal theory to 

motivate empirical work, and finally present a practical toolkit for reading and understanding the 

mathematical aspects of ecological theory. We hope that empowering empiricists to embrace 

theory in their work will help move the field closer to a full integration of theoretical and 

empirical research.  
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Introduction 

 

“The great book of nature is written in the language of mathematics.” 

– Galileo Galilei c. 1600 

 

Scientific inquiry should operate as a feedback loop in which theory that describes the natural 

world is developed, tested empirically through carefully articulated hypotheses, modified to 

better represent reality, and then tested again. When this feedback loop works, theory provides a 

framework to guide inquiry, experimental design, and the interpretation of observed patterns, 

supplies mathematical tools to harness information from collected data, and connects individual 

experiments to general ideas about how nature operates. In turn, empirical research can be used 

to support, refute, or revise theoretical predictions, indicate which theoretical assumptions are 

consistent with the natural world, and point theoreticians to overlooked processes that can be 

integrated into models.  

Feedback between theory and experimentation has always been essential for the progress 

of ecology (Gause 1935; Huffaker 1958; Simberloff and Wilson 1969; Tilman 1977), and as 

collaborations across disciplines become more common, theoretical and empirical research have 

the potential to be more tightly linked than ever before (Laubmeier et al. 2020; Rossberg et al. 

2019; Servedio 2020). Moreover, in confronting global challenges such as climate change, 

biodiversity loss, and emerging diseases, humanity can benefit enormously from the ecological 

understanding that arises from a fully functional scientific process (Ferrier et al. 2016; Marquet 

et al. 2014). 
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Unfortunately, the links between theoretical and empirical research in ecology are not as 

strong as they could be (Caswell 1988; Fawcett and Higginson 2012; Haller 2014; Kareiva 1989; 

Rossberg et al. 2019; Scheiner 2013). Up to 45% of empirical ecology papers make no mention 

of any theory whatsoever (Scheiner 2013), and fewer than 10% of ecologists and evolutionary 

biologists agree with the statement that “theoretical findings drive empirical work” in their fields 

(Haller 2014). This disconnect has been attributed to several underlying challenges, including a 

lack of emphasis on theoretical training in ecology (Rossberg et al. 2019), a lack of motivation 

on the part of some theoreticians to engage with the language of empiricists (Grimm 1994) or 

with the elements of nature that empiricists focus on (Krebs 1988), a general lack of mutual 

appreciation between empiricists and theoreticians (Haller 2014), and persistent communication 

barriers between these two groups (Servedio 2020). A major cause of the communication barriers 

between theoretical and empirical ecologists is that in ecology, as in other scientific fields, theory 

is often expressed in the language of math. Ecologists come to the field through a variety of 

educational and experiential pathways, are often drawn to ecological research by an interest in 

natural history or hands-on field and lab research, and may not be formally trained in advanced 

math. Likewise, theoretical research may not be written for a general audience and can contain 

unexplained assumptions, terminology or notation that hinders comprehension (Dee-Lucas and 

Larkin 1991; Grimm 1994). As a result, the mathematical aspects of theory can feel inaccessible 

to empiricists (Fawcett and Higginson 2012; Haller 2014). Indeed, the more equations an 

ecology and evolutionary biology paper contains, the fewer citations it receives (Fawcett and 

Higginson 2012). Of the empirical papers that do cite mathematical theory, only about half do so 

both correctly and specifically (Servedio 2020). This barrier presents a major challenge to the 

full integration of theoretical and empirical work in ecology.  
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Previous papers and books have discussed the causes and extent of the disconnect 

between theoretical and empirical research in ecology (Fawcett and Higginson 2012; Haller 

2014; Kareiva 1989; Łomnicki 1988; Rossberg et al. 2019; Scheiner 2013). The value of theory 

in ecology and evolutionary biology has been emphasized, and many have advocated for a better 

integration of theory into empirical work (Caswell 1988; Marquet et al. 2014; Pickett et al. 2010; 

Servedio 2020; Servedio et al. 2014). Detailed, step-by-step instructions for building biological 

models and fitting them to data have been provided (Bodner et al. 2020; Bolker 2008; Otto and 

Day 2007; Pielou 1969). Recent work has helped to demystify the process of theory creation 

(Otto and Rosales 2020), has advocated for the training of more theoretical ecologists (Rossberg 

et al. 2019), and has provided an overview of some of the challenges associated with 

communicating theory to a broad audience (Shoemaker et al. 2021). However, this still leaves 

many empiricists who are interested in motivating their research with theory, but have little prior 

experience with math and models, struggling to take the first step.    

We seek to fill this gap by providing an accessible guide that covers the basic, step-by-

step process of how to approach, understand and use ecological theory in empirical work. We 

achieve this by (1) briefly reviewing how and why mathematical theory is created, (2) outlining 

four specific ways that mathematical and verbal theory can be used to motivate empirical work, 

and (3) providing a toolkit for reading and understanding the mathematical aspects of ecological 

theory. We are ecologists and evolutionary biologists spanning the full spectrum from 

empiricists to theoreticians, and this guide is the outcome of the empiricists amongst us feeling 

intimidated by the mathematical aspects of theory and reaching across the divide to our 

theoretical colleagues to build the toolkit needed to understand and use theory. While we 

recognize that the onus should not fall entirely on empiricists to bridge the theory-empirical 
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divide, and that fostering collaborations between theoreticians and empiricists and encouraging 

theoreticians to present their theory in a clear and accessible way are also critical for achieving 

this goal, in this paper we focus on the steps that empiricists can take. Our aim is not to teach 

empiricists how to create theory or to express it as math, but rather to empower empirically-

minded ecologists to read and understand mathematical theory and to integrate theory into their 

work at every step in the research process. 

A primer on theory 

We begin by introducing the general concept of theory: what it is, what it aims to do, and how it 

is created. While we focus on ecological theory, many of the ideas discussed here will also apply 

to evolutionary theory and to other scientific fields. We focus primarily on theory that is 

expressed mathematically because these elements of theory often present the steepest 

accessibility barrier to empiricists, while recognizing that theory and math are not inexorably 

linked. Indeed, many excellent theories do not involve math (e.g., The Theory of Evolution by 

Natural Selection (Darwin 1859)), and many uses of math in ecology are not theory (e.g., 

practical applications of statistics). Finally, we restrict our discussion to model development that 

does not use data, but discuss statistical model fitting as an empirical approach (see ‘Use the 

mathematical equations’).  

What is theory? 

We define ecological theory broadly, as an explanation of an ecological phenomenon. These 

explanations take the form of narratives that explain how an ecological process works or why an 

ecological pattern is observed, and that become scientifically useful when expressed in a logical 

structure (Pickett et al. 2010; Rossberg et al. 2019). The transformation of an idea in narrative 

form into logical testable theory often, though not always, involves the use of mathematical 
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models (Otto and Rosales 2020). A mathematical model is an equation or a set of equations that 

describes how different aspects of a system relate to one another (Otto and Day 2007). The term 

‘model’ refers to the fact that mathematical models are idealized and simplified versions of 

reality, just as architectural models represent key features of complex structures and model 

organisms represent a group of organisms that share common attributes (Kokko 2007). The 

translation of ideas in a theoretician’s mind into math on a page serves several purposes: math 

provides a clearer and more objective expression of relationships, it brings to light assumptions 

and logical errors that may be obscured in verbal hypotheses, and it places ideas and hypotheses 

into a concrete and concise form (Grimm 1994; Kokko 2007; Marquet et al. 2014; Otto and 

Rosales 2020).  

How is mathematical theory created? 

The process of expressing theory in mathematical terms can seem mysterious to those who have 

never attempted it, which can make theory seem unapproachable. Here we pull back the curtain 

on theory creation by describing the typical steps that a theoretician takes when creating a 

mathematical model (Bolker 2008; Otto and Day 2007), and in doing so, highlight the many 

similarities between conducting theoretical and empirical research. 

Step 1: The motivation. The first step in theory creation often parallels that of empirical 

research: the theoretician thinks of a biological question that she is interested in or a biological 

process that she wants to understand. The question may be motivated by an unsolved problem; 

for example, how temperature affects consumer-resource dynamics (DeLong and Lyon 2020; 

O'Connor et al. 2011). Or it could be motivated by an empirical observation; for example, 

evidence of interspecific differences in plant species’ susceptibility to pathogens and an interest 

in the implications for plant coexistence (Ke and Wan 2020; Stump and Comita 2018). Or it may 
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be motivated by a practical problem; for example, the need to understand how population 

structure influences COVID-19 dynamics (Britton et al. 2020).  

In other cases, the creation of new theory is motivated by the desire to extend an existing 

model rather than to develop a new model from scratch. Indeed, most models are variants of 

previous models, extended to include different biological features, to tailor the model to a new 

system, or to address a slightly different question. One underappreciated initial goal of some 

theory is to provide a proof-of-concept that verifies or refutes ideas that may have previously 

only been expressed verbally (Servedio 2020). This use of theory demonstrates that something 

can happen under certain conditions, but not necessarily that it is likely to occur under all, or 

even most, conditions (Otto and Rosales 2020; Servedio 2020; Servedio et al. 2014). These 

models can serve as hypothesis tests themselves and may not be meant to be tested empirically 

(Caswell 1988; Servedio et al. 2014). More broadly, it is important to note that creating theory 

and translating it into math is a means of scientific discovery unto itself, and while in this paper 

we focus on the ways in which empiricists can use theory, theory need not be tested empirically 

in order to be useful. Theory can have a major influence on a field without any empirical testing, 

for example theory demonstrating that transient dynamics can be prevalent and long-lasting 

(Hastings 2001). Recognizing that not all theory was necessarily meant to be tested empirically 

can help empiricists focus on the types of theory that are most relevant to their scientific goals. 

Step 2: The method. Next, the theoretician looks at the approaches that theory addressing 

similar questions has used and decides whether these approaches are relevant, justified, and 

suitable. The approach a theoretician takes is likely to be guided and constrained by her 

background; for example, a theoretician who is most familiar with dynamical models (those that 

track how a system changes over time) may be drawn to research questions that can be answered 
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by that type of model, just as an empiricist who works with plankton mesocosms may focus on 

questions that are well-suited to that approach.  

A feature of this stage of theory development that may not be obvious to empiricists is 

the variation in the degree to which a new model builds on, tweaks, and combines existing 

models, versus conceiving of an entirely new mathematical approach. For example, 

parameterizing predator-prey population dynamic models with expressions for temperature-

dependent biological rates from metabolic theory led to new insights about how temperature 

affects the abundance of interacting consumers and resources (O'Connor et al. 2011). Likewise, 

many COVID-19 models are variants of the classic “SIR” epidemiological model documenting 

transitions among Susceptible, Infectious, and Resistant hosts. In contrast, mathematical 

approaches drawn from physics were adopted by ecologists to understand the complex dynamics 

of animal grouping behavior (Okubo 1986), and math from information theory have yielded new 

perspectives on ecological problems such as energy flow in food webs (Rutledge et al. 1976) and 

biodiversity (Jost 2006). For empiricists interested in creating models, the recognition that theory 

is often created by combining existing models in new ways can help reduce the perceived 

barriers to participation. 

Step 3: The equations. In this step, the theoretician first decides which parameters and variables 

are necessary to describe the biological process of interest. A parameter is a quantity that has a 

value that does not vary within a given equation (e.g., resource supply rate), while a variable is a 

quantity whose value can vary within the equation, for example through time (e.g., population 

size). In the simple model describing a linear relationship between x and y (𝑦 = 𝑚𝑥 + 𝑏), x and 

y are variables (there are multiple values of x and y), and m (the slope) and b (the y intercept) are 

parameters (there is only one slope and one y intercept for this equation). Note that while 
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parameters do not vary within an equation, the biological processes that they represent do vary in 

nature (e.g., across space, time, organism identity) and changing the value of parameters and 

exploring how that affects outcomes of interest is a common exercise in theory development (see 

“numerical approaches” below). A helpful exercise when deciding how multiple related 

equations should be written out is to draw “stock and flow” diagrams that show the relationship 

between the different variables in each equation (Otto and Day 2007). 

In determining the equations, the theoretician must make difficult choices between how 

broadly the model can be applied across systems (generality), how closely the model mimics real 

world processes (realism), and whether the model produces specific quantitative predictions or 

general qualitative predictions (precision) (Bodner et al. 2020; Levins 1966; Servedio et al. 

2014). For example, models can be written with more terms or relationships to capture more 

biological detail, but additional terms may render the model less general. Note that the aim of 

mathematical models is to increase our understanding of some phenomenon, not to describe 

nature perfectly, and so a model making unrealistic assumptions or simplifying a process is not 

necessarily a failing of the theory or a reason to discount its ability to guide empirical research 

(Grimm 1994; Kokko 2007; Levins 1966; Phillips 2015; Pielou 1969; Servedio 2020). Just as 

empirical studies vary widely in their realism, from field-based observational studies to highly 

manipulated lab experiments, so too do ecological models. And just as each type of empirical 

study has value, so too does each type of theory.  

Step 4: The analysis. The theoretician then uses mathematical procedures to understand the 

behavior of her equations within the range of parameters that she is interested in exploring. This 

can include solving for equilibria, investigating the stability of the equilibria, or studying how a 

response of interest (e.g., equilibrium density) varies across a range of parameters. These are 
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common ways of determining the “outcome” of the processes being modeled. Models can be 

analyzed analytically or numerically. Analytical approaches use mathematical techniques to 

solve the equation (i.e., find the equation that has the output of interest on the left-hand side) 

(Table S1). This approach requires mathematical labor but produces more general conclusions 

(Otto and Day 2007). Numerical approaches (e.g., “simulations”) involve setting model 

parameters to specific values and observing the outcome graphically or as numeric values (Table 

S1). Here, conclusions are limited to the specific range of parameter values being explored, but 

because no analytical solutions are needed, theoreticians may turn to this approach when a model 

is too complex to be approached analytically. Numerical approaches are somewhat akin to 

empirical experiments in that the theoretician varies a specific process (e.g., resource supply rate) 

to determine how that affects an ecological outcome (e.g., consumer population density). While 

analyzing a model’s behavior cannot match the biological realism of an empirical experiment, it 

does allow researchers to hold potentially confounding factors constant and to explore a wide 

range of parameter space, whereas empirical experiments need to randomize factors that cannot 

be controlled (e.g., individuals, sites) and are often logistically constrained to smaller ranges or 

discrete categories (e.g., “low” vs “high”). Likewise, the ability to depart from the realities and 

constraints of the natural world allows theoreticians to explore questions that would be difficult 

or impossible to address empirically, such as the consequences of very long time scales, complex 

interactions or extreme trait values.  

Step 5: The end. Finally, the theoretician refines her equation(s) and writes up and publishes the 

research questions, model, analyses, and conclusions. To refine the equations, the theoretician 

will often check whether the results make sense, both logically and in light of previous empirical 

or theoretical work, and revise the model and analyses accordingly. In writing up her findings, 
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the theoretician will ideally follow practices that help empiricists understand and use her work, 

such as describing how the model follows or departs from previous theoretical research, 

interpreting the results verbally, including a table of all model parameters and their biological 

meanings, and describing experiments that could be used to test the predictions. A full 

integration of theoretical and empirical research in ecology will depend on sustained efforts by 

both empiricists and theoreticians to bridge the divide, and these efforts will be most fruitful 

when theoreticians are motivated to write up their findings with empiricists in mind and to 

highlight assumptions and results that can be measured and tested in the lab or field. 

How to use theory in empirical research 

In this section we outline four ways that theory can be integrated into empirical research. 

These classifications are not strict categories, and a single theory may fall into several categories. 

This organization simply represents one way to think about theory that can guide empiricists as 

they move through different stages of their research. All four of these approaches could be used 

in a single study, as they are applied at different stages of project design (Fig. 1).  

An important philosophical question to consider when integrating theory into empirical 

work is what “testing a theory” actually means. To us, an empiricist tests theory by using 

empirical data to evaluate whether the outcomes predicted by the model or the assumptions it 

makes occur in a natural system, not whether the math is correct (Servedio et al. 2014). Two of 

the approaches covered below (‘Test the predictions’ and ‘Test the assumptions’) involve 

“testing” theory. The other two approaches (‘Adopt the framework’ and ‘Use the math’) do not 

actually test the theory, but rather accept that it is applicable enough to be useful in guiding 

empirical research.  
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Approach 1. Adopt the framework 

Some ecological theories act as general frameworks for understanding ecological dynamics (in 

the broadest sense) or for understanding a major class of ecological processes (Pickett et al. 

2010). While these theories may also provide specific mathematical equations or predictions, the 

larger contribution is often a new way of thinking about a problem or a unification of related 

ideas. Examples of this type of theory include The Theory of Evolution by Natural Selection 

(Darwin 1859), Consumer-Resource Theory (Lotka 1926; Volterra 1927), Grime’s Triangle of 

Plant Strategies (Grime 1977), Life History Theory (Pianka 1970), Modern Coexistence Theory 

(Chesson 2000), The Neutral Theory of Biodiversity (Hubbell 2001), The Metabolic Theory of 

Ecology (Brown et al. 2004), and The Maximum Entropy Theory of Ecology (Harte and 

Newman 2014). Some of these theoretical frameworks are purely verbal, some are heavily 

mathematical, and some involve a mixture of both verbal and mathematical reasoning. 

Theoretical frameworks create a scaffold within which ecological patterns and the processes that 

generate them can be understood, and they can provide the context in which to integrate evidence 

from experiments, observational studies, and mathematical modelling (Fig. 1). In some cases, a 

new theoretical framework sparks the interest of empiricists and prompts a rapid rise in empirical 

work focused on a certain topic.  

How to do it 

Theoretical frameworks can enhance empirical research in several ways: they can 

reorient how we understand and study a biological process (e.g., The Theory of Evolution by 

Natural Selection), they can unite disparate lines of evidence into a unified framework (e.g., 

effect of temperature across organizational scales in Metabolic Theory), they can help focus 

empirical research on a specific process or relationship (e.g., dispersal in Metapopulation 
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Theory), or they can provide a null model for how patterns emerge in nature (e.g., The Neutral 

Theory of Biodiversity). Although theoretical frameworks can be extremely useful, it is also 

important to keep in mind that all theoretical frameworks have shortcomings, that many will 

eventually outlive their utility, and that the lack of diversity amongst the authors recognized for 

generating the theoretical frameworks in ecology has undoubtedly limited the range of 

perspectives represented. 

A useful first step when motivating empirical research with a theoretical framework is to 

become familiar with the framework and with existing empirical work that has adopted it. This 

can help clarify which aspects of the framework have been well-explored and where gaps in our 

collective understanding remain. It can also help to reveal common experimental designs that 

address the questions or capture the processes described in the framework (Broekman et al. 

2019; Grainger and Gilbert 2016). This step can also help reveal situations in which new 

empirical methods are needed to apply an emerging framework, which can be an exciting 

opportunity for empiricists (e.g., methods to quantify selection on phenotypic traits on ecological 

timescales introduced in Lande and Arnold (1983); methods to account for phylogenetic 

relatedness in comparative studies introduced in Felsenstein (1985); methods to apply Modern 

Coexistence Theory introduced in Godoy and Levine (2014)).  

Approach 2. Test the predictions 

Theoretical work often generates specific predictions, and testing these predictions is a 

common way that empiricists use theory (Fig. 1). The central aim of testing predictions from 

theory is to determine whether a pattern that a theoretical model predicts matches a pattern that 

manifests in a natural or experimental system, ideally with the end goal of using the theory to 

deepen our understanding of the processes that create those patterns. Examples of recent 
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empirical tests of classic theoretical predictions include the predicted increase in species richness 

with increasing island area and connectivity from the Theory of Island Biogeography (proposed 

by MacArthur and Wilson (1967); e.g., tested by Prugh et al. (2008)), the predicted negative 

density dependence of seed recruitment from the Janzen-Connell Hypothesis (proposed by 

Janzen (1970) and Connell (1971); e.g., tested by Harms et al. (2000)) and the predicted strategy 

of delayed germination in variable environments (proposed by Cohen (1966); e.g., tested by 

Venable (2007)).  

How to do it 

The first steps in testing theoretical predictions are to consider what type of model the theory 

uses (Box 1), to explore the model and understand (well enough) what the math means 

biologically (see ‘A toolkit for understanding equations’), and to determine what assumptions the 

theory makes (Box 2). Next, the empiricist can consider how the theory can inform experimental 

design. The theoretical paper will ideally lay out its predictions clearly, in words and in figures 

(see Box 3); for example, the prediction that local diversity is maximized at intermediate levels 

of dispersal between habitat patches (Mouquet and Loreau 2003). The empiricist can then 

determine what needs to be manipulated and what needs to be measured: here, an experiment in 

which organisms’ dispersal rates between local patches are manipulated and diversity is 

measured (e.g., Parain et al. (2019)). Theory can also help inform the more detailed elements of 

experimental design, for example: should all organisms have the same dispersal rates? How 

many dispersal levels are needed to detect the predicted relationship? Is repeated sampling over 

time necessary? For each question, the empiricist will have to consider trade-offs between 

matching the experimental design to the theoretical assumptions, matching the design to the 
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attributes of a natural system, and designing an experiment that is feasible to implement (Box 2) 

(Grainger and Gilbert 2016; Laubmeier et al. 2018; Uszko et al. 2020).  

At this stage, a careful consideration of what evidence is needed to strongly support or 

refute a theoretical prediction can be valuable. Powerful empirical tests of theoretical predictions 

document a pattern (or ideally multiple patterns) that are very unlikely to occur by chance or 

alternative mechanisms, that support a single hypothesis, and that (ideally) reject one or multiple 

alternative hypotheses (Loehle 1987; Platt 1964). They quantitatively measure responses to the 

manipulation of the independent variable, they have sufficient replication to detect the 

theoretically predicted responses, and they use experimental conditions that are consistent with 

the theory’s assumptions. Doing so makes it possible to draw conclusions about the validity or 

generality of the theory based on whether or not results are consistent with the theory’s 

prediction.  

However, a challenge with hypothesis testing in ecology is that the context and system-

specific nature of ecological dynamics mean that results that fail to reject a null hypothesis are 

not necessarily a strong refutation of a theory (Hardin 1960; Loehle 1987). As such, it is 

worthwhile to carefully consider what conclusions can be drawn if experimental results do not 

support the theoretical prediction, and how the experiment can be designed so that any outcome 

will provide interesting insight into the process of interest. One way to conduct more nuanced 

hypothesis testing is to ask: “when does x affect y, as predicted by theory?” rather than “does x 

affect y?” The answer is more likely to be “sometimes” than “always” or “never.” For example, 

research suggests that dispersal is a stronger driver of diversity in the absence of predators than 

when predators are present (Chase et al. 2010; Kneitel and Miller 2003). There is a good reason 

why many conclusions in ecology include the word “can”: it takes a critical mass of empirical 
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evidence from many systems in order for the field to accept that a theoretical prediction is 

broadly and generally supported. However, while contributing empirical support for a theoretical 

hypothesis is a worthwhile achievement, we also strongly encourage the dissemination of 

negative results (those that detect no effect), which make important but undervalued 

contributions to scientific progress and can highlight areas where existing theory needs 

modification (e.g., Fig. 1) (Knight 2003; Loehle 1987). 

Approach 3. Use the mathematical equations  

Sometimes a valuable part of a theory to an empiricist is a specific equation that can be used to 

obtain a quantitative estimate of a biological process that is difficult or impossible to measure 

directly (Fig. 1). For example, measuring the strength of competitive interactions or the rate of 

disease transmission is difficult, but established models can be used to estimate these from more 

easily measured quantities such as birth and death rates. Below we discuss two specific ways that 

an empiricist can use equations from theory to gain new information: model fitting (in which 

parameters are estimated), and the direct use of an equation (in which the response variable is 

calculated). A third and very straightforward way that an empiricist can “use” mathematical 

equations, particularly those that are tailored to a given biological system, is to help determine 

which biological processes are most relevant to a particular outcome and should therefore be 

measured or manipulated in experiments. For example, models of flour beetle dynamics identify 

several types of cannibalism as important to population growth (Dennis et al. 1995), while 

annual plant models highlight germination rate and seed bank viability as key mediators of 

population growth rates (Levine and Rees 2004). This guidance can be particularly helpful for 

empiricists starting work in a new system. 
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How to do it 

The first step in using equations is to figure out what information is desired and which candidate 

models can provide that information. At this stage, it is important to check that the assumptions 

of candidate models are satisfied by the biological system and experimental design being used 

(Box 2), because once a model is used to estimate a biological process, it becomes implied that 

the system meets the assumptions of that model, and the quality of any subsequent results will 

depend on this being (mostly) true (Clark et al. 1998). When selecting candidate models, 

established models can be used or existing models can be modified to reflect the dynamics and 

conditions of the study system. The modification of existing models to fit the study system or the 

dynamics of interest can blur the line between using and creating theory, which is often a sign of 

effective integration of empirical and theoretical research (e.g., Duffy et al. (2005); Moeller et al. 

(2016)).  

The first way to use equations in empirical research is “model fitting” (a.k.a “fitting 

models to data”). To do this, the empiricist identifies mathematical models that describe a 

process of interest, collects measurements of the response and predictor variables in these 

models, and then uses statistical techniques to estimate the values of free parameters (those 

whose values are unknown) that best match the relationship observed in the data (Bolker (2008) 

and Table S1). Each of the free parameters represents a biological process or property of interest. 

An example of this approach is using a functional response model to estimate two parameters, 

the space clearance rate (a.k.a attack rate) and handling time in a predator-prey interaction, by 

inputting data from an experiment that quantifies the number of prey consumed (response 

variable, y) when different numbers of prey are available (predictor variable, x) (West & Post 

2016). To fit a model, the empiricist provides candidate models (e.g., Ricker Model, Beverton-
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Holt model, a new model) that each propose a different relationship between x and y (e.g., 

straight line, hump-shaped), along with the data for the variables in the model (e.g., x and y). 

Then statistical methods such as maximum likelihood are used to estimate the attributes 

(parameters) of that relationship (e.g., the y intercept, the slope, and the curvature) of the model 

with the highest probability of explaining the observed data. These statistical methods usually 

quantify the deviation between the model expectation and the data, and then iteratively alter the 

parameters to make the deviations smaller until the best-fitting model is found (Bolker 2008). 

The outputs of model-fitting and model comparison are estimates of the parameters, their 

uncertainties (errors), and relative support for the different candidate models. The empiricist may 

be interested in these parameter values themselves (e.g., determining the space clearance rate of 

a given predator on a specific prey), or how they change with an experimental manipulation 

(e.g., determining how space clearance rates vary with temperature, as in DeLong and Lyon 

(2020)). 

A second way to use equations in empirical research is to collect data that can simply be 

plugged into an equation as predictor variables in order to calculate the response variable. In this 

case, the collected data are the variables and parameters on the right-hand side of the equation, 

and the variable on the left-hand side of the equation is the value of interest that is calculated. 

Examples of this approach include estimating maximum sustainable yield in fisheries from 

population growth rate and carrying capacity (Schaefer 1954) and estimating the spread rate of 

invading organisms from dispersal and population growth rates (Andow et al. 1990; Kolmogorov 

1937). To do this, the empiricist collects the necessary data and enters them as predictor 

variables into the equation. The estimated outputs that are generated can then be used in 

subsequent analyses; for example, determining how species spread rates are affected by habitat 
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type (Andow et al. 1990). One issue to be aware of with this approach is that collected data will 

have error surrounding them, and determining the proper way to carry this error through to the 

final estimated data can require careful consideration (e.g., Terry et al. (2021)). 

Approach 4. Test the model assumptions 

A final way that empiricists can use theory is to directly test the assumptions that underlie 

theoretical models (Fig. 1, Box 2). This type of empirical research has a strong link to theory, 

and is often conducted with the express purpose of informing future theoretical work (Price et al. 

2012; Servedio et al. 2014). This type of research has the potential to make a major impact in the 

field, particularly when the tested assumptions are widely invoked. For example, empirical 

research that challenged the widespread assumptions that evolution is slower than ecology 

(Losos et al. 1997; Reznick et al. 1990) and that interspecific niche differences play a major role 

in structuring ecological communities (Hubbell 2001) have inspired major bodies of research. 

Looking forward, many of the simplifying assumptions of The Metabolic Theory of Ecology 

have not been adequately verified by empirical research (Price et al. 2012), and the widely 

adopted assumption that pairwise interactions can adequately capture community dynamics, 

which underlies much of coexistence research, remains largely untested (Levine et al. 2017).  

How to do it 

The first step in testing model assumptions is to identify assumptions that are likely to have 

significant impacts on the conclusions drawn in a field but are not yet well-supported by 

empirical research. This can be achieved through a broad reading of both the theoretical and 

empirical work in the field, and widely applied assumptions may be particularly likely to come to 

light during a literature review or meta-analysis. Assumptions that have substantial effects on 

model outcomes will hopefully be identified explicitly in theoretical papers (see Box 2 “Meeting 
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model assumptions”) and can also be explored using the techniques for understanding equations 

provided below (particularly Tip #4 “Achieve a working understanding of equations”). The next 

step is to collect the data required to support or refute the assumption. For example, while classic 

foraging theory assumes that per capita predator feeding rates are independent of predator 

density (Holling 1966), empirical data on feeding rates across predator densities have refuted this 

assumption and prompted revised models (DeLong and Vasseur 2011; Novak et al. 2017; 

Vucetich et al. 2002).  

One consideration when designing this type of experiment is how broadly the results can 

be applied. If the goal is to assess whether the assumption is met in the type of system to which 

this theory is most often or most appropriately applied, then testing in a representative system 

makes sense (e.g., Bernhardt et al. (2018)). If the goal is to make a broad statement about 

whether an assumption is met, in general, then data from multiple systems may be needed (e.g., 

DeLong and Vasseur (2011)). Ideally, the final step for empirical research that tests model 

assumptions will be that the results of such experiments will feed back to inform and improve 

subsequent theoretical work. 

A toolkit for understanding equations 

So far, we have described how theory is created and have highlighted several ways that 

empiricists can integrate theory into their research to attain a better understanding of nature. 

However, many theories in ecology are expressed in the language of math, and in order to 

effectively use mathematical theory, empiricists must be able to understand it. A helpful first step 

towards understanding mathematical theory is to determine generally what type of model one is 

dealing with by answering some basic questions (Box 1). The next step is likely the biggest 

hurdle most empiricists face: understanding equations. We tackle this challenge by providing 
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concrete tips for visualizing functions, interpreting common symbols and figures, and 

deciphering their biological meanings. For readers looking for a more comprehensive treatment 

of these topics, we also provide a list of textbook sections that cover these topics in much greater 

depth (Table S1). 

To anchor our discussion, we begin by presenting a modified Rosenzweig-MacArthur 

consumer-resource model where both the consumer (with density represented by the variable C) 

and the resource (with density R) grow and impact each other (Rosenzweig and MacArthur 

1963): 

  

Now, did you read the equations or skip past them? Our first piece of advice is to give the math a 

chance: spend five minutes trying to get to know it. The more time one spends with equations, 

the more familiar reading new equations becomes. Try to not get bogged down by new symbols 

(e.g., Greek lettering), as often the specific choice of symbols used is arbitrary or based on 

precedent. Here, C and R are the densities of individuals in each population, and dC/dt and dR/dt 

are rates of change of each population’s size; note that dC/dt represents a rate of change in 

continuous-time models, whereas discrete-time models are expressed as Ct+1 = f(Ct) which 

represents the value of a variable at the next time step (Box 1). When dC/dt > 0, the value of C is 
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increasing over time, whereas C is decreasing when dC/dt < 0. In eqn. 1.1, resources experience 

some maximum per capita growth rate in the absence of competition or consumers, denoted by r, 

and have carrying capacity K. In eqn. 1.2, a is the space clearance rate (a.k.a attack rate; the area 

or volume cleared of prey per predator per prey unit time), h is the amount of time a consumer 

spends handling each prey item (e.g., time to kill, eat, digest, etc.) that would otherwise be spent 

searching for prey, e is the conversion rate of consumed resources into new consumer 

individuals, and m is the per capita rate of consumer death.  

What’s the best way to begin approaching these equations? We start by unpacking an 

equation’s basic anatomy and considering the terminology that can be used to discuss different 

elements of equations. Each symbol in an equation can be classified as either a variable, a 

parameter, or an operator. As described above (‘How is mathematical theory created?’), a 

variable is a quantity whose value changes either dependently (e.g., population size) or 

independently (e.g., time) of other variables. Parameters are fixed quantities that remain 

constant within a given equation (e.g., consumer death rate). Constants are numbers that enter 

equations according to some assumption made by the theoretician. For example, in eqn. 1.2, the 

one in 1–R/K indicates that resources grow at 100% of their intrinsic growth rate if R is near 

zero. Sometimes constants are called coefficients or constant factors when multiplying a 

variable (e.g., the coefficient rN in an equation of exponential growth represents the fact that 

every individual will produce r surviving offspring on average). Operators describe how 

different quantities in equations interact with each other, including simple operations from 

algebra (i.e., addition, multiplication, etc.) and complex ones, such as those associated with set 

theory (e.g., ∩) or calculus (e.g., ∫; Fig. 2). 
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Collections of symbols also have their own terminology. A term is a set of variables 

and/or parameters that are multiplied or divided together or placed inside parentheses. There are 

two terms on the right-hand side of eqn. 1.2: e(aRC)/(1+ahR) and mC. These terms may be 

composed of multiple factors that multiply together to give the term (e.g., m times C). An 

expression is the full set of terms contained on the same side of the equal sign. Any one equation 

can be rearranged, or “expressed,” in different ways, resulting in different expressions that 

maintain the equivalence between the left-hand side and right-hand side of the equation 

(sometimes abbreviated to ‘LHS’ and ‘RHS’ in theory papers, respectively). Clearly, there is a 

specific terminology associated with different elements of equations that should not be used 

interchangeably (i.e., variable ≠ parameter, term ≠ expression). 

Now, let’s get into some concrete tips. 

Tip 1: Align the math with the biology. Math provides an abstraction of nature, but back-

translating math into biology can help make equations interpretable and can make it easier to 

identify the model’s assumptions. In the equations above, notice that the population growth of 

resource R depends on the population size of consumers C and vice versa (i.e., R and C appear in 

both equations). This interdependence makes intuitive biological sense because the consumer 

population relies on resources to produce offspring, and as consumers consume resources, the 

resource population is depleted. Also notice that in these equations, the resource can exist 

without the consumer (if C=0 eqn. 1.1, the growth of R reverts to logistic growth), but the 

consumer cannot persist without the resource (if R=0 and C>0 initially in eqn. 1.2, C will decline 

to extinction (i.e., C=0) over time because dC/dt < 0). Again, this intuitively makes sense (see 

Tip 4, for tips on how to understand any equation) and it illustrates how models often build upon 

previous models (here adding a consumer to a model of resource growth). Notice also that the 
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equation for resource population growth includes a carrying capacity (K), which causes 

population growth to slow as the value of R (resource density) approaches K (i.e., R/K 

approaches 1, causing the quantity in the parentheses to approach 0). This indicates that, in this 

particular set of consumer-resource equations, the resource R is biological and is itself limited by 

density-dependent competition. This equation for R thus fits the behavior of a plant but not an 

abiotic resource that enters and exits the system in a density-independent fashion (i.e., sunlight). 

Try picturing two organisms that adhere to the biological assumptions above in order to make the 

abstract math more tangible. Lastly, if the consumer spends relatively little time handling a 

resource relative to the time it takes to find and attack that resource (so h≈0, for example, a 

sessile filter feeder), then the rate of resource consumption by each consumer increases linearly 

with the population size of the resource (because the denominator in eqn. 1.2 equals 1). If, by 

contrast, substantial time is spent handling resources (i.e., h>>0, for example, carnivores that 

hunt large prey), then the rate of resource consumption saturates when more resources are 

present than the consumer has time to consume.  

Tip 2: Think in terms of stocks and flows. On a basic level, equations describe how variables 

grow or shrink in response to other variables. The stock is the amount of a given variable that 

exists at any point in time (e.g., population size) whereas flows are inflows (i.e., individuals 

added by birth) and outflows (i.e., individuals being removed by death) that affect the amount of 

stock and its rate of change. It can help to keep track of which parameters represent inflows 

versus outflows. Drawing out a stock and flow diagram (Box Fig. 1a) by linking stocks 

(typically represented by circles) and flows (arrows) can be helpful, especially when multiple 

terms cause any one variable to shrink or grow or when multiple variables are linked. Although 

the conventions for stock and flow diagrams vary across the literature, we use a recommended 
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approach that maximizes connections between the equations and the diagram (Otto and Day 

2007) (see also Ogbunugafor and Robinson (2016)).  

Tip 3: Verbally summarize complex terms. Some mathematical terms are complex and 

involve many symbols. For example, the term (eaRC/(1+ahR)) is the consumer birth rate, but it 

can be broken into three main parts: the number of consumers (C), the foraging rate per 

consumer (aR/(1+ahR)), and the number of consumers produced per resource eaten (e). By 

breaking down multi-symbol terms in this way, we can see which mechanisms are being invoked 

(here, individual-level foraging, satiation, reproduction) to generate higher-order phenomena 

(here, population-level growth). Thus, although complex, we can simplify eqn. 1.2 to read as just 

two parts: individuals added via birth due to consumption minus individuals lost via death. These 

simplifications can be written out in words as we have done in our description of eaRC/(1+ahR), 

or can be shown by annotating the equations to reflect the summarized descriptions. Doing so 

reduces the number of specific symbols that need to be tracked. Note that some parameters in 

equations may themselves be a simplification made by the author. For example, parameter h in 

equation 1.2 is a consumer’s handling time, but h can be expanded further to include time spent 

subduing a resource, time spent consuming it, and time spent resting following consumption. 

Rearranging equations to build new expressions (while maintaining left-hand side and right-hand 

side equivalence) can produce more biologically intuitive descriptions of terms (e.g., dividing 

both sides of equation 1.2 by C in order for the left-hand side to be expressed as a per capita 

rate). 

Tip 4: Achieve a working understanding of equations. Well enough is better than not at all, 

but what level of understanding is sufficient to be useful? For example, one may not need to 

know at what exact value of a variable a function reaches an inflection point, but understanding 
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whether the function is saturating or non-saturating is still useful. One trick is to think in terms of 

what happens to a dependent variable when the independent variable takes on a particular value, 

especially extreme values. For example, consider what happens in an equation if a variable is 

zero vs a large number: perhaps an asymptote is reached, or the function may become undefined 

(e.g., division by 0), meaning that the value chosen is outside the domain (set of possible values) 

of the function. Solving equations with arbitrary values of variables also can help determine 

whether a function is linear or nonlinear, or if relationships between variables are negative or 

positive. This is a “plug and play” approach where plug = input value and play = calculate output 

value. This approach can be used to understand the relationship between two variables for some 

specific combination of parameter values, or to explore how different parameter values change 

the relationship between variables.  

Tip 5: Visualize functions precisely by plotting them. Tip 4 described how to generally 

understand what a function looks like. For some purposes, though, this is not sufficient. 

Although a theoretician’s ideal solution to this problem would be to find analytical solutions, 

doing so may require expert knowledge and may not be feasible for some complex equations. 

For someone trying to better understand a theory, another option is to input equations in a 

spreadsheet (e.g., Excel) or a programming application (e.g., R) and use plotting to explore the 

consequences of changing different parameter values or the initial value of variables on the 

dynamics of the state variable itself (e.g., Nt). This is essentially a simple numerical analysis. A 

worked example of how to explore equations using simple numerical analysis can be found in 

Chapter 3 of Bolker (2008). Alternatively, interactive applications for exploring certain models 

can be found online (e.g., Shiny apps, see Kandlikar (2021)).  
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Tip 6: Identify common signposts. In reading theory papers, one might notice a range of 

symbols of various script types (e.g., Roman, Greek) and typefacing (e.g., bolding, 

capitalization, cursive script). Although any one symbol may be used to denote entirely different 

variables in different papers, or even worse, different symbols may be used to denote the same 

biological process in different papers entirely at the discretion of the author, some symbols are 

used consistently and have a specific meaning (Edwards and Auger‐ Méthé 2019). When these 

types of symbols appear in theory papers to symbolize complex operations or data structures, 

they are rarely defined because they are considered common knowledge. Not knowing what 

these symbols represent, or even which symbols are specific to that paper and which hold some 

generally accepted meaning, can be a major barrier to understanding equations. In Figure 2, we 

present a list of common symbols/typefaces, describe what they mean mathematically, and 

provide an example of their use in a biological context. Although we cannot cover every symbol 

that will be encountered in theory papers, simply knowing that undefined symbols and specific 

typefaces often hold specific meaning should help you to recognize when and what to ask of a 

search engine (most symbols can be copied and pasted into search engines). We also cover some 

commonly encountered mathematical objects and operations (e.g., Jacobian matrices) in Figure 

2. 

Tip 7: Consider the fact that some information might be missing, presented unclearly, or 

incorrect. In some instances, confusion on the part of the reader may stem from the presentation 

of the material itself (e.g., undefined terms, unclear units) rather than the reader’s knowledge. 

We hope that our discussion of some of the barriers to empiricists understanding theory will 

encourage theoreticians to present their work in a way that can be more easily interpreted by a 

non-expert. And while we have focused our discussion on tests of theory that do not involve 
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determining whether or not the math is correct, it may also be helpful for empiricists to keep in 

mind that theory is not infallible and that in some instances the math may indeed be incorrect. 

We suggest that empiricists, after putting in some effort to understand a theory paper and 

arriving at unresolved uncertainties, contact the authors for clarification. 

Conclusion 

We hope that by demystifying theoretical work, the perspectives presented here will help break 

down current barriers to the integration of, and feedback between, theoretical and empirical 

research in ecology. We particularly hope that this paper is valuable to early career empiricists 

starting out in the field. Charles Elton, when reviewing Alfred Lotka’s book on the mathematics 

of populations, famously critiqued, “like most mathematicians, [Lotka] takes the hopeful 

biologist to the edge of the pond, points out that a good swim will help [their] work, and then 

pushes [them] in and leaves [them] to drown” (Elton 1935). Unfortunately, nearly a century later, 

hopeful empiricists are still regularly being left to flail around in the murky waters of theory. 

Here we offer a life raft and encourage empiricists to dip into the shallow waters of theory and to 

slowly gain the confidence, capability, and curiosity to venture deeper.  
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Box 1. Types of mathematical models 

Determining the general attributes of a theoretical model by asking the following three questions 

can help the empiricist understand a model and determine whether or not a model is a good fit 

for their research.  

How does the model deal with the passage of time?  

Determining whether, and how, a model involves the passage of time will provide insight into 

the type of study system it describes. Models that describe how a system changes through time 

are called dynamical models and are very common in ecology. Some dynamical models include 

discrete time steps (e.g., from one life stage to the next or one generation to the next), whereas 

others model time continuously. Discrete-time models will have something like 𝑛(𝑡 + 1) or 

𝑛𝑡+1 on the left-hand side of the equation (which represents the value of a variable at the next 

time step), whereas continuous-time models will have something like 𝑑𝑛 𝑑𝑡⁄  on the left-hand 

side of the equation (which represents a change in the value of a variable over time). This 

distinction can be important when determining whether a model matches a given study system. 

For example, because population sizes change when organisms reproduce or die, if the focal 

organism reproduces in discrete time steps with non-overlapping generations (e.g., annual plants, 

birds), then a discrete-time model may be most applicable. However, if the organism reproduces 

continuously (e.g., zooplankton, aphids), a continuous-time model might make more sense. 

While understanding how time is passing in a model can be helpful to the empiricist, note that 

theoreticians may model time in a certain way for mathematical convenience and that it is 

possible to convert a model between discrete and continuous time under the appropriate 

assumptions (Otto and Day 2007). Finally, some models do not include the passage of time at all, 
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including most metabolic theory (Brown et al. 2004) and optimal foraging theory (Charnov 

1976).  

Is the model mechanistic or phenomenological?  

Although the distinction between mechanistic and phenomenological models is often fuzzy and 

will depend on the perspective of the investigator and the theoretical framework in which they 

are working, thinking about this distinction can help the empiricist decide whether a model fits 

their needs (Otto and Day 2007; White and Marshall 2019). Mechanistic models explicitly 

include underlying biological mechanisms, or put another way, explicitly model dynamics 

happening at a different level of organization. For example, in models that describe resource 

competition, a mechanistic model will model the amount of each resource produced and 

consumed through time. Classic examples include MacArthur’s consumer-resource model 

(MacArthur 1970) and Tilman’s resource competition model (Tilman 1977). In both of these, the 

resources being competed for are included in the model. In contrast, phenomenological models 

are focused on the patterns (i.e., the phenomena) that emerge from an underlying process, rather 

than the process itself. For example, a phenomenological model of populations competing for a 

shared resource tracks population dynamics of consumers without explicitly including the 

underlying mechanisms that drive those responses (Otto and Day 2007; White and Marshall 

2019). Instead of including the entity being consumed in the model, competition for limited 

resources is implied by including terms such as the carrying capacity or competition coefficients. 

A classic example is the Lotka-Volterra competition model (Lotka 1926; Volterra 1927).  

If the empiricist has an interest in the underlying mechanisms (e.g., the nature of resource 

competition) and has the required information to apply a mechanistic model (e.g., the key 

resources underlying competition are known), then a mechanistic model can offer deeper insights 
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about the system. If they do not, then a phenomenological model may be more appropriate and 

does not require as in-depth an understanding of underlying drivers.  

Are the predictions qualitative or quantitative?  

Qualitative predictions state that x is related to y in some way and are very common in 

ecological theory. For example, The Theory of Island Biogeography predicts that species 

richness is positively related to island size and proximity to the mainland (MacArthur and 

Wilson 1967). A qualitative prediction may describe a broad pattern such as “species reach 

carrying capacity” or x affects y, or may be more specific, such as “carrying capacity scales 

linearly with intrinsic growth rate” or “there is a hump-shaped relationship between x and y.” By 

contrast, quantitative predictions include specific numerical values and are more common in 

ecosystem theory and metabolic theory. For example, metabolic theory predicts that an 

organism’s metabolic rate scales with the ¾ power of its body mass (West et al. 1997). 

Considering the level of specificity of a model’s predictions can help the empiricist start to think 

more precisely about the possible outcomes of an experiment that would support a given 

prediction.   
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Box 2. Meeting model assumptions 

A critical step in designing empirical research that provides a robust test of theoretical 

predictions is to ensure that the study meets as many of the model’s assumptions as possible. 

This is not always straightforward, as model assumptions may not be explicitly stated in words in 

a theory paper. If assumptions are stated explicitly, they will often be found in the “model” 

section of the paper, and some indication will hopefully be given of how critical the different 

assumptions are for the predictions generated by the model. For example, there may be a 

paragraph in the discussion that mentions the assumptions and limitations of the model and is 

somewhat analogous to a “caveats” section in an empirical paper. If this is not in the paper, the 

tips provided in ‘A toolkit for understanding equations’ may help empiricists uncover 

assumptions that are described mathematically but not verbally and feel empowered to explore 

how sensitive the outcome is to the assumed relationship between variables and parameters using 

a “plug and play” approach (Tip 4).  

Some common assumptions in models used in ecological theory are:   

 the system is analyzed or observed at dynamic equilibrium 

 species interactions are competitive (i.e., not facilitative) 

 resources are limited 

 individuals interact with all other individuals with equal likelihood (i.e., no spatial 

structure) 

 individuals within a species are identical in terms of how they interact, reproduce, 

and survive (i.e., no intraspecific variation) 

 there is a time-scale separation between ecology (fast) and evolution (slow) 
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 there is a time-scale separation between resource growth (fast) and consumption 

(slow) 

 dispersal rates are homogenous across species and are not spatially explicit (i.e., 

‘global’ dispersal) 

 the outcomes of biological processes are deterministic (i.e., no stochasticity) 

 population growth is density-dependent and follows a simple functional form 

(e.g., linearly declining per capita growth rate as the population size increases in 

the logistic equation) 

 predator consumption rates saturate as prey densities increase (i.e., ‘Type II 

functional response’) 

Note that some of these assumptions are made for mathematical convenience (e.g., no spatial 

structure, no stochasticity) whereas others reflect biological realities (e.g., resources are limited, 

population growth is density-dependent). Likewise, some of these assumptions should be evident 

from the mathematical equations themselves (e.g., species interactions are competitive, predator 

consumption rates saturate as prey density increases), whereas others must be stated explicitly in 

words in order to be communicated (e.g., no spatial structure, no intraspecific variation).  

While keeping these types of distinctions in mind can help the empiricist navigate the 

task of determining what a model’s assumptions are and how closely they need to be matched 

experimentally, deciding how perfectly assumptions need to be met in order for a model to be 

useful is a subjective exercise. Our stance is that empirical work does not need to perfectly 

satisfy every model assumption and that the focus should be on understanding which 

assumptions are critical to the outcomes and which are more flexible. Ideally this is outlined, or 

at least alluded to, in the theory paper (Servedio 2020). Worthwhile questions to ask include: If 
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these assumptions were broken, how would this change the predicted outcome? And: is it 

possible to meet the critical assumptions of this model in the biological system of interest, or is a 

different model or system needed? 

Thinking about assumptions can be a useful philosophical exercise for empiricists at both 

the microscale of an individual experiment and the macroscale of the entire field. At the 

microscale, there are assumptions in every empirical study, even those not based on theory, and 

grounding experiments strongly in theory can help bring assumptions to light and force 

researchers to explicitly state what they are and when they are bent or broken. This can 

encourage the empiricist to think more deeply about experimental design and can make it easier 

for future researchers to build on their work. At the macroscale, it is useful for the discipline as a 

whole to regularly examine the common assumptions that have become the default and to 

consider whether they indeed reflect reality, and how outcomes might change if these 

assumptions were to be broken (see ‘Test the Model Assumptions’).   
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Box 3. How to interpret common figures in ecological theory papers  

Here, we present five common types of figures in ecological theory (Box Fig. 1) and walk 

through their interpretation. Each panel shows a different way of representing the structure 

(panel a) or the outcome of model simulations (panels b-e) of the same model (eqn. 1 in the main 

text).  

Stock and flow diagram (Box Fig. 1a): These diagrams visually summarize a model by 

showing its components and how they interact. Box Fig. 1a shows one of many ways to draw a 

stock and flow diagram and follows conventions from Otto and Day (2007) (see also 

Ogbunugafor and Robinson (2016)). Here circles are variables that can be thought of as “stocks” 

(e.g., the total amount of resources (R) and consumers (C)). Symbols within circles are variables, 

and symbols labeling the arrows are parameters. Arrows moving towards a circle are “inflows” 

that increase the amount of stock, while arrows moving away from a circle are “outflows” that 

decrease the amount of stock. Arrows moving from one type of stock to another show how those 

variables are interdependent and where one type of stock is converted into another (e.g., 

consumed resources converted into consumer growth). In this model, arrows between two stocks 

represent interspecific effects, arrows that feedback on themselves represent intraspecific effects, 

and arrows that point out of one stock without connecting to another stock represent flows out of 

the system (i.e., mC).  

Time series [dynamic] plot (Box Fig. 1b,c): This type of figure shows how variables of interest 

change over time. They can be used to assess equilibria; for example, for a given combination of 

parameter values, one can see how long a system exhibits transient dynamics (i.e., an initial 

phase of instability) before it stabilizes. They can also be used to determine if dynamics are static 

(i.e., population size remains constant, in Box Fig. 1b) or oscillatory (Box Fig. 1c). Finally, they 
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can be used to quickly assess ecological outcomes (e.g., which species persist over the long term) 

or how the dynamics of two variables are interrelated (i.e., synchronous vs. asynchronous 

dynamics). 

Phase-plane [phase portrait] diagram (Box Fig. 1d,e): These summarize the trajectories of 

variables in multi-variable models and serve as an alternative to time series plots. In these plots, 

the location of the tail of each arrow marks the value of each variable at the start of a timestep, 

and the location of the head of the arrow is the value at the end of the timestep. The length of the 

arrow represents the size of the change, and the arrow’s angle shows the relative magnitudes of 

change of one variable vs. the other. The isoclines (colored lines) represent the range of values at 

which the specified variable experiences no net growth if the value of the other variable were to 

be held constant (often not biologically plausible). The point at which the isoclines of the two 

species intersect is the two-species equilibrium. Here the two-species equilibrium is stable when 

e=0.65, as population sizes converge on these points. Note that variables’ trajectories could 

instead be shown as a “vector field” in which arrows point toward stable equilibria and away 

from unstable equilibria.  

Bifurcation plot (Box Fig. 1f): These are useful for visualizing where the nature of the 

dynamics changes, for example, between having a single stable value to having unstable values 

or to something more variable. A ‘bifurcation point’ is the value of a given parameter where such 

changes in the model’s dynamical behavior occurs. In Box Fig. 1f, for example, a conversion 

efficiency of 0.65 leads to stable dynamics (a single consumer density over time) whereas a 

conversion efficiency of 0.75 causes oscillations (a range of consumer densities over time; 

minimum and maximum values of the oscillation are denoted on the plot). For this model, the 

range of abundances after the bifurcation is shaped like a tuning fork because as conversion 



49 

 

efficiency increases, the amplitude (or range of values covered) of the oscillating dynamics 

increases.  

Summary plots (Box Fig. 1g): These show how changing multiple parameters at once affects an 

outcome of interest, for example, the type of population dynamics observed (e.g., stable limit 

cycles) and show the parameter values where transitions between outcomes occur. Here each 

axis is a different parameter in the model and the shading indicates which outcome is observed. 

They can also show whether or not the effect of one parameter on an outcome of interest depends 

on the value of other parameters. Parameters that are not explicitly shown on the axes are 

assigned fixed values that are often specified in figure captions (see Box Fig. 1 caption). 
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Figure legends 

Figure 1. How to use theory in empirical research: a case study. The highlighted study, Narwani 

et al. (2013), uses theory in each of the four of the ways discussed in this paper (“How to use 

theory in empirical research” section). Their research question, empirical methods and 

conclusions are shown in the center, and the specifics of how they applied each of the four 

approaches are in the surrounding four sections. While Narwani et al. (2013) used all four 

approaches in their study, each of these four approaches can also be used effectively on its own.  

Figure 2. Common theoretical notations 

Box Figure 1. Five types of figures that are commonly encountered in consumer-resource theory 

papers: a stock and flow diagram (a), time series plots (b-c), phase plane diagrams (d-e), a 

bifurcation plot (f), and a summary plot (g). All panels are based on a modified Rosenzweig-

MacArthur model of consumer-resource interactions (eqn. 1). Panels b-f are parameterized as 

follows: r = 1, K = 3.5, a = 1.3, h = 0.8, m = 0.5. Two values of conversion efficiency (e) are 

contrasted in panels b-e and are represented by dots in panels f and g. Parameters and code to 

reproduce this figure are available at https://mabarbour.github.io/foodweb-theory/rosenzweig-

macarthur.html.  
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Typical

notation

Context/

description

Operator Realm Mathematical

definition

Example of use in

ecology

Visual representation

∫
∫ ( )

Integral Calculus The area under a
function f(x) for
the range of x
values between a
and b.

Total amount of
resources consumed 
by consumer, with a
gradient of resource
types (e.g., seeds of
different sizes)
(Roughgarden 1971).

d

or ′( )

Derivative Calculus The slope of a
function 
evaluated for any 
value of x. Equals
the rise/fall in the
function for a
very small
change in x.

Used to address rates
of change of
population size over
time and the stability 
of equilibria.

d2 2

2

or ′′( )

2nd-degree
derivative

Calculus The derivative of
a derivative
indicating how
fast the slope
changes (i.e.,
acceleration) for
any value of x.

Used to describe
whether fitness is

stabilizing (
2

2 <0) or

disruptive (
2

2 >0)

for trait x.

∂ Partial
derivative

Calculus When a function 
has more than 
one variable, say 
x and y, a partial
derivative
assesses the slope
in one direction,
say x at a specific
(underived) value
of y.

Change in population 
size over time at a
particular point in 
space (Okubo and 
Levin 2013)

A or Aij Uppercase,
bold Roman 
symbol

A matrix.
If unbolded 
and italicized 
(i.e., Aij),
refers to a
single cell in 
the matrix.

Matrix 
algebra

An i (row) by j
(column) matrix.
For square
matrices, i and j
vary from 1 to n,
the number of
dimensions.

A Leslie matrix 
contains information 
on fecundity and 
survival of different
life stages.

v or vi or
⃗⃗

Lowercase,
Roman 
symbol

A list or
vector if
bold, a single
element if
unbolded

Matrix 
algebra

A vector A vector representing 
population sizes of
different life stages or
species
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Jacobian matrix Matrix 

calculus

A square matrix 

of derivatives

describing linear

approximations

of function fi(x1,
x2, …, xn) for each 

equation i, with

as the entry in 

row i column j.

The Jacobian matrix 

describes the rate of

change of each 

function with respect

to each variable.
Used in linear

stability analyses,

where the functions

describe how each 

variable changes over
time.

Hessian matrix Matrix 

calculus

A square matrix 

of second-order

derivatives
describing the

curvature of

function fi(x1, x2,

…, xn), with
2

as the

entries in row j

and column k.

Describes the local

curvature of a

function with many 
variables. Can be

helpful in identifying 

critical points of a

function (e.g., local

maxima). Used in 
evolution to 

determine

evolutionarily stable

strategies (ESS).

Eigenvector Linear

algebra

A vector

associated with a

square matrix 

which, when 

multiplied with 

the matrix, does
not change its

direction.

The dominant

eigenvector (with the

largest eigenvalue) of

the Leslie Matrix is

the stable age

distribution of a
population.

Eigenvalue Linear

algebra

A unique real

number

associated with 

an eigenvector

which represents

how much the
eigenvector gets

scaled when 

multiplied by the

square matrix.

Describes the

direction and speed of

change. The largest

eigenvalue of the

Leslie Matrix 

represents the long-
term growth rate of

the population.

Mathematical term Realm Mathematical

definition

Example of use in

ecology

Visual representation
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Table S1. List of textbook sections that introduce modeling and mathematical topics. Bolding 

indicates where the topic is discussed in the main text.  

Topic Books Sections Notes 

Graphically solving 
equilibria and determining 
their stability 

Gotelli (2008) Chapters 5, 6, 

Appendix 

Isocline analysis for 

Lotka-Volterra models. 

 
Case (2000) Chapters 5, 12, 14 Graphical method to 

find equilibria. 

Cobwebbing and 

isocline analysis. 

Analytically solving 
equilibria and determining 

their stability (Tip 5) 

Case (2000) Appendix 3 Includes some linear 

algebra facts. 

 
Otto and Day (2007) Chapters 5, 7, 8 Detailed description of 

linear stability analysis 

for single and multiple 

variable models. 
 

Pastor (2008) Chapter 2, 

Appendix 

Basics of linear 

stability analysis and 

corresponding MatLab 

commands. 

 McCann (2011) Chapter 2 Walkthrough of linear 

stability analysis. 

Performing numerical 
simulations (Tip 5) 

Otto and Day (2007) Chapter 4 Numerical simulations 

and plots to gain 

understanding of model 

dynamics. 
 

Crawley (2012) Chapter 28 Simulating discrete 

space/time models in R. 

Covers both 

deterministic and 

stochastic models. 

Fitting models to data 
(“Use the mathematical 

equations” section) 

Hilborn and Mangel 

(1997) 

Chapters 5, 7, 9, 11 Describes regression, 

likelihood, and 

Bayesian methods. 

Includes pseudocodes 

to do some of the 

analyses. 
 

Bolker (2008) Chapters 6, 7 Introduction to 

maximum likelihood 
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and optimization 

methods. 
 

Roughgarden (1998) Sections 4.4, 6.1.1 Uses MATLAB. Gives 

a computational 

perspective. 

 McElreath (2020) Chapters 2, 16 Conceptual mechanics 

of Bayesian data 

analysis. Examples of 

how to fit systems of 

ODEs to data. 

Model development 
   

Biology to math  

(Tips 1, 3)  

Otto and Day (2007) Chapter 2 Detailed description on 

how to write out 

equations based on 

flow diagrams. 
 

Gotelli (2008) Appendix General description of 

creating continuous 

time population 

dynamics models and 

key steps in the 

analysis of such 

models. 

Math to biology  

(Tips 2, 4, 5) 

Otto and Day (2007) Primer 1 Detailed description of 

basic functional forms 

and control parameters. 

 Bolker (2008) Chapter 3 Detailed description of 

basic functional forms 

and control parameters. 
 

Case (2000) Appendix 1 Part 2 Explains some 

important jargon in 

population models like 

equilibrium, variables, 

parameters, and initial 

conditions. 

General math techniques 
(Tips 4, 5, 6, Table 1) 

Otto and Day (2007) Appendix 1 Commonly used 

algebraic rules. 
 

Pastor (2008) Chapter 2 Basic mathematical 

toolbox for commonly 

used techniques. 
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Bolker (2008) Appendix Algebra and calculus 

basics. 
 

Bodine et al. (2014) Chapter 4 Exponential and 

logarithmic functions. 

Calculus  Case (2000) Appendix 1 Part 1, 

Appendix 5 

Visualizing 

mathematical functions. 

Properties of some 

typical mathematical 

functions with figures. 

Some common 

derivatives and 

integrals. 
 

Otto and Day (2007) Appendix 2 Basics on calculus 
 

Bodine et al. (2014) Chapters 15-24 Basic calculus: Limits, 

continuity, 

differentiation, and 

integration. 

Linear algebra Case (2000) Chapter 3, 

Appendix 2 

Age/stage structured 

models (Leslie matrix). 
 

Caswell (2006) Appendix A Basics of matrix 

algebra. 
 

Otto and Day (2007) Primer 2 Basics of linear 

algebra. 
 

Bodine et al. (2014) Chapters 6-9 Matrix models; Finding 

eigenvalues, 

eigenvectors, and 

interpretation 

Probability Case (2000) Appendix 6 Describes mean, 

variance and standard 

deviation with some 

common probability 

distributions. 
 

Otto and Day (2007) Primer 3 Basics of probability 

theory. 

 Bolker (2008) Chapter 4 Probability theory and 

distribution. 
 

Bodine et al. (2014) Chapters 10-12, 25 Basics of discrete and 

continuous probability 

spaces. Permutations 

and combinations. 
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