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Volterra (1928) was apparently the first to use a mathematical model to suggest 
that the indefinite coexistence of two or more species limited by the same resource 
is impossible. This theme, which has been expanded by several authors into the 
statements that n species cannot coexist on fewer than n resources (MacArthur 
and Levins 1964; Levins 1968) or in fewer than n "niches" (Rescigno and 
Richardson 1965) or when limited by fewer than n "limiting factors" (Levin 1970), 
has become known as the "competitive exclusion principle" (Hardin 1960). 

The "principle" has been the center of much heated debate. Slobodkin (1961) 
has argued that it is not really a principle at all, but rather a tautology, and can 
serve only as a "rule of ecological procedure" to be followed in examining cases 
of species coexistence. Hutchinson (1961, p. 143) has phrased essentially the same 
thought in a more positive manner: "Just because the theory is analytically true 
and in a certain sense tautological, we can trust it in the work of trying to find out 
what has happened" to allow coexistence. In Hutchinson's view the principle is 
useful precisely because it is believed to be a tautology, a statement which is 
logically true and therefore not subject to empirical falsification. 

It is therefore not surprising, given Hutchinson's influential view on the utility 
of the competitive exclusion principle, that a number of authors have attempted to 
extend the range of the tautology by generalizing Volterra's model to cases of 
more than one resource or limiting factor (MacArthur and Levins 1964; Rescigno 
and Richardson 1965; Levins 1968; Levin 1970; Haigh and Maynard Smith 1972; 
Haussman 1973; Armstrong and McGehee 1976a, 1976b; Kaplan and Yorke 1977; 
McGehee and Armstrong 1977). Our purpose in this paper to review these at- 
tempts, to examine the basis for recent results, and to provide a general 
framework for examining theoretical problems of competitive exclusion. 

In Section 1 we examine Volterra's original proof of competitive exclusion, 
paying particular attention to the biological assumptions underlying Volterra's 
model. In this section we also introduce the various models which have been used 
in attempts to extend Volterra's model to cases of more than one resource, and 
discuss the results of previous authors. Section 2 contains a detailed discussion of 
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the work of Koch (1974b) and ourselves (Armstrong and McGehee 1976a; 
McGehee and Armstrong 1977), which proves that two species can indeed coexist 
on one resource in a time-invariant and spatially homogeneous environment. 

In Section 3 we discuss the mathematical notion of an attractor and restate the 
general question of competitive exclusion. Section 4 summarizes current knowl- 
edge on all aspects of this general question. In Section 5 we explore the special 
problem of coexistence at fixed densities. We conclude that, in this special case, n 
species cannot coexist on fewer than n resources. 

1. THE BASIC MODELS 

We begin with a close examination of Volterra's (1928) original model. Volterra 
first assumed that the dynamics of competing species can be described by the use 
of differential equations. This assumption is very important, and has been almost 
universally adopted by those who have studied competitive exclusion from a 
mathematical point of view. We shall discuss this most basic assumption more 
fully in Section 3. 

For the moment, postulate the existence of n species xi, i = 1, . . , n, competing 
for the same resource R. Let the specific (or per capita) growth rate of each 
species increase linearly with the amount of resource present, so that 

1 dxi - yiR -i, i = 1, n, (1) 
Xi dt 

where -i > 0 is the rate at which the population would decline in the absence of 
resource and yi > 0 relates increased resource abundance to increased growth. 
Next assume that the amount of resource available to any competitor at time t is 
diminished by the presence of the competitors such that at any time t, 

R = Rmax - F(x1, . . . , x,). (2) 

Here F(x1,. , xl,) is an unbounded increasing function of the population densities 
xi, with F(O, . . , 0) = 0. Substituting (2) into (1) and replacing YiRmax - oi by Ei 
yields Volterra's original equations: 

dxi = Xi[Ei - yiF(xl, . . ., x,)], i = 1, . . ., n. (3) dt 

Volterra showed that, as t -> oo, the species with the largest value of Ei/yi will 
approach a finite nonzero density, and the remaining species will all approach 
extinction, provided that Ei > 0 and xi(O) # 0 for the winning species. 

Several simplifying assumptions are implicit in the above model. (i). The or- 
ganisms under consideration are "simple" in the sense that the dynamics of the 
system can be adequately described by the species densities xi. Complications 
arising from age structure or physiological state are assumed unimportant. (ii) The 
species interact only through the resource, so that their specific growth rates are 
functions of R alone, not of the xi. (iii) The system under consideration is spatially 
homogeneous. (iv) The resource is uniform in quality. For example, if the re- 
source consists of particles of food, these are uniform in size and nutritional value. 
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(v) There is no explicit time dependence to the interactions, either in terms of 
time-dependent interaction parameters or external forcing. There are no time lags. 

Coexistence has been shown to be possible in many cases where one or more of 
these assumptions are violated. For example, Haigh and Maynard Smith (1972) 
showed that two predators could coexist on one prey species if they utilized 
different life stages of the prey (contra assumption [i]); and Stewart and Levin 
(1973) and Koch (1974a), following the suggestion of Hutchinson (1961), demon- 
strated that two species can coexist on a single resource in a time-varying envi- 
ronment (contra [v]). 

The Volterra model (1)-(3) is an example of a "linear abiotic resource" model: 
"linear" because the specific growth rates of the competitors are linear'functions 
of resource densities, and "abiotic resource' because the resource regenerates 
according to an algebraic relationship. At any given time a parcel of abiotic 
resource exists either in a "free" state or in a "bound" state. In the free state it is 
available for use by any individual, while in the bound state it is in use by some 
individual. For example, if the resource were a chemical nutrient, that part of the 
nutrient pool which is currently in use by living individuals is in a bound state; the 
remainder is in a free state. A second example of an abiotic resource is space, a 
parcel of which is in the bound state if it is occupied by some individual and in the 
free state if it is not occupied. A parcel of abiotic resource is regenerated from the 
bound state to the free state through the death of the individual by which it was 
bound. Such regeneration is assumed to occur instantaneously. 

The Volterra model (1)-(3) is easily generalized to include k resources (Rescig- 
no and Richardson 1965). It can be further generalized by relaxing the assump- 
tion of linearity in equation (1), yielding the class of "abiotic resource" models: 

dxi = xitus (R1, . . ., Rk), i =1, * .. , n, (4) 

Rj = Rj max -Fj(xl, * * * , x, ) (Sa) 

= sj(x I . .,xl), j = 1, ... , k. (Sb) 

Since the Rj are to be considered resources, it is assumed that species growth rates 
will increase with resource availability, and that resource densities will decrease 
with species densities. These conditions are specified by 

ott i :I: 0 and xs, ', 0 (6) a~O and 

where the equalities hold if and only if a particular species i does not use a 
particular resource]. A large class of chemostat models can be reduced to the 
abiotic resources model (Canale 1970; Waldon 1975; see also Appendix A). The 
"limiting factor" equations of Levin (1970) are exactly (4) and (Sb) without the 
monotonicity restrictions (6). 

Another important class of models concerns "biotic" resources, resources 
which regenerate according to their own differential equations, as would prey 
species (MacArthur and Levins 1964; Koch 1974b; Armstrong and McGehee 
1976a; McGehee and Armstrong 1977). The defining equations for this class of 
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models are 

dxi = xiui(R1, . . . , Rk), i = 1, n, dt (7) 
dRj - Rg g(R, . 

., Rk, Xi, ...,x,1), j ,. k. 
dt 

The monotonicity conditions 

OR 0 and a (8) 

analogous to equations (6), are expected to apply to this model. 
Various authors have used these models in attempting to prove that n species 

cannot indefinitely coexist on k < n resources or limiting factors (Volterra 1928; 
MacArthur and Levins 1964; Rescigno and Richardson 1965; Levins 1968; Levin 
1970). All such early attempts contained the assumption that the specific growth 
rates ui of the competing species are linear functions of resource or factor densi- 
ties. In addition, these authors (with the exception of Levin 1970) restricted their 
attention to coexistence at fixed densities. 

More recently, several authors (Koch 1974b; Zicarelli 1975; Armstrong and 
McGehee 1976a, 1976b; Kaplan and Yorke 1977; McGehee and Armstrong 1977) 
have shown that when these two restraints are simultaneously relaxed the 
coexistence of n species on k < n resources becomes possible. In the following 
sections we detail the conditions under which this coexistence is possible and 
provide a coherent framework for viewing problems of competitive exclusion. 

2. COEXISTENCE OF TWO SPECIES ON ONE BIOTIC RESOURCE 

Koch (1974b) was the first to point out via computer simulation that two species 
could coexist on one biotic resource. This coexistence occurred along what 
appeared to be a periodic orbit, not at an equilibrium point. The coexistence of 
two species on one biotic resource was later confirmed analytically (McGehee and 
Armstrong 1977) and expanded to the case of n species coexisting on one biotic 
resource (Zicarelli 1975). 

In this section we provide insight into the mechanism behind this coexistence. 
We will present an intuitive look at why the coexistence depends both on the 
nonlinearity of the growth functions ui and on the lack of system equilibrium. 
Those who desire complete proofs should consult the papers of McGehee and 
Armstrong (1977) and Zicarelli (1975). 

Consider a system composed of two species xl and x2 competing for the same 
biotic resource R. Let the defining equations for this system be: 

d=xi(-mi-M + 
c 1iqR) (9a) 

= X2(-m2 + c2q2R), (9b) 
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FIG. 1.-Computer simulation of two predators coexisting on a single prey (biotic re- 
source). The model is that of eqq. (9) with m1 = .1, c1 = .3, -11 = .5, F = 50, r = .1, K = 300, 
M2 = .11, c2 = .33, 712 = .003. The system was started atx1 = 1, R = 400,x2 = 0, a point very 
near the two-species periodic orbit of x1 and R. At t = 194, a small amount (.01) of predators2 
is added; it readily invades the limit cycle. To the right of the break in the axis the apparent 
periodic behavior of the three-species system is shown. This limiting configuration is also 
reached if a small amount of x1 is added to the two-species system (x2, R) near its stable 
equilibrium. 

dR = Rr( I- Rp. 7 ?JiXi -q (9c) 
dt t ( K) R + F 

In these equations m1 and m2 are the death rates of the competitors in the absence 
of resource; mql and 'r2 are rate constants for resource consumption (per unit 
competitor and per unit resource); c 1 and c2 are conversion efficiencies of resource 
biomass into competitor biomass; r and K are, respectively, the maximum growth 
rate and carrying capacity of the prey; and F is a half-saturation constant in the 
functional response of competitor 1. Note that competitor 2 is of the Lotka- 
Volterra type. 

Computer simulation of the above system (fig. 1) suggests that the three species 
coexist along a periodic orbit for appropriate parameter values. How is this 
coexistence effected? 

Consider first the species pair (xi, R) in the absence of species 2. This pair has 
an equilibrium point (x8, R*) defined by 

-ml + (clR* = o, r 1 +R* R*+F -o ? 

The equilibrium point (x8, R*) may be stable or unstable, depending on parameter 
values. 



156 THE AMERICAN NATURALIST 

2 

0.05- 

I __ i 
2 / / R** ~~~~~~~~200 C!, 

-0.1 
C 

FIG. 2.-Growth rates of the predators of fig. 1 as functions of prey density R. The region C 
represents the approximate range of variation of R over one cycle in the three-species system. 

Consider next the species pair (x2, R) in the absence of species 1. This pair has 
an equilibrium point (x2*, R**) defined by 

1 ~* 
-m2 + c2rq2R** = 0, r K - = 0. 

The equilibrium point (x2*, R**) will be globally stable for all parameter values 
(McGehee and Armstrong 1977). 

Now think of a small amount of species 1 introduced into the system (X2, R) near 
its equilibrium point. Species 1 can successfully invade if and only if dx1ldt > 0 
when x1 is small and (X2, R) is near (x2*, R**). From equation (9a) we see that 
invasion can occur if and only if -mi + cgpR**/(R** + F) > 0. Since the specific 
growth rate of species 1 is an increasing function of R, this inequality holds if and 
only if R** > R*. In the simulation (fig. 1) the parameters were chosen such that 
R* = 100 and R** = 110 (fig. 2), insuring that species 1 can indeed invade the 
two-species equilibrium point (x2*, R**). 

Why, then, does competitor 1 not exclude competitor 2? By reasoning similar to 
that given above, we know that dx21dt < 0 near the two-species equilibrium point 
(x, R*) if R* > R*. However, we also know that this equilibrium point may not 
be stable. In fact, for certain parameter values the two-species system (x1, R) 
approaches a periodic orbit. Furthermore, around this orbit the average prey 
density R will be greater than R* (Appendix B). Species 2 will be able to invade 
the system (x1, R) along this periodic orbit if and only if its average rate of increase 
along the orbit is positive. That is, invasion is possible if and only if 

1 1 dX2 dt = if[-m2 + -q2C2R(t)] dt > 0, (10) 

where r is the period of the two-species limit cycle of x1 and R. The right-hand side 
of (10) reduces to -M2 + 7q2c2R > 0, where R (I /T) R (t) dt, so that invasion is 
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possible if and only if R > R**. Therefore, if parameters in the model (9) are 
chosen such thatR* < R* < R, mutual invasibility is insured. Such is the case in 
the example of figure 1. 

Although the foregoing argument shows that each species is able to invade the 
other near its equilibrium configuration, it does not constitute a proof of coexis- 
tence (see Appendix C). Such a proof requires consideration of the global prop- 
erties of the three-species system, as in McGehee and Armstrong (1977). The 
above argument does expose two crucial points, however. (1) We could not have 
obtained mutual invasibility or stable coexistence if both competitors had obeyed 
Lotka-Volterra dynamics, since for Lotka-Volterra predators R* = R (Appendix 
B). (2) The cycling of the two-species system (x1, R) is necessary for coexistence 
for exactly the same reason: Without such cycling R* = R. 

Although the properties of nonlinearity and lack of equilibrium are crucial for 
the coexistence of n species on k < n resources, these properties are in no sense 
pathological. First, the assumption of nonlinear, saturating functional response 
curves is much more realistic than the assumption of Lotka-Volterra functional 
response, since the latter implies that the specific growth rate of a species in- 
creases indefinitely with increased resource density (Armstrong and McGehee 
1976b). (We specified a Lotka-Volterra functional response for x2 in system [9] for 
purely expository purposes; in Koch's (1974b) original computer simulation, both 
competitors had saturating functional response curves.) 

Second, we follow Levin (1970) in feeling that coexistence which is not at fixed 
densities still deserves to be considered coexistence. For example, if a system 
composed of a predator species and a prey species persists indefinitely, even if 
this persistence is along a cycle, we would assert that the two species are indeed 
coexisting. 

3. REPHRASING THE PROBLEM 

With the realization that two species could be made to coexist on a single biotic 
resource, we were led to rephrase the problem of competitive exclusion in more 
fundamental terms (McGehee and Armstrong 1977). 

Our basic assumption is that the population dynamics of a community consist- 
ing of m species is adequately described by a set of ordinary differential equations 
of the form 

dxi _x ifi (X 1,...x ,), i= 1 M. (11) dt 

Here xi is the density of species i andfi(x1, . . ., x,,,) is its per capita growth rate. 
For the purposes of this section, the k resource equations of the biotic resource 
model (7) are not explicitly distinguished from the n competitor equations of the 
same model. Thus, for biotic resources, m = n + k. 

The decision to use differential equations is not totally innocuous. Cole (1960) 
has objected to the competitive exclusion principle on the basis that all species 
with finite population sizes (i.e., all real species) are doomed to eventual extinc- 
tion because of statistical fluctuations in population size. We must recognize, 
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therefore, that we cannot use differential equation models to prove indefinite 
coexistence. Rather, we seek from differential equation models indications of 
strong tendencies towards coexistence. 

In terms of the model (11) we can now define the term persistence. 
Definition 1.-The system (11) is said to exhibit "persistence at fixed densities" 

if it possesses an asymptotically stable equilibrium point x* = (x*,.. , x*) with 
x* > O for all i = 1,... ,m. 

If the system is started near its equilibrium point x*, then each species in a 
system satisfying definition 1 will tend asymptotically to its equilibrium density X; 
that is, the distance between the state vector and the equilibrium positions* will 
tend to zero as t -> 0o. Since all species are present at the final equilibrium, we say 
they are coexisting at fixed densities. 

Definition 1 is far too restrictive to serve as a general definition of persistence. 
For example, a predator and prey can coexist with neither species ever ap- 
proaching either extinction or constant density. Such a system should be consid- 
ered persistent. To include possibilities other than coexistence at fixed densities 
we use a notion common in the mathematical theory of dynamical systems, 
namely, that of an "attractor." Roughly speaking, we define an "attractor block" 
to be a region in the state space {(x1, . . . , x7m)} such that solutions starting on the 
boundary of the region pass into its interior. (A precise definition of "attractor 
block" can be found in a previous paper [McGehee and Armstrong 1977].) 

Definition 2.-The system (4) is said to exhibit "persistence" if it has an 
attractor block bounded away from the m faces {xi = O}, i = 1, . . , m. 

If the species start initially with densities in the attractor block, their densities 
will remain in the block for all future time. If xi > 0, i = 1, . . . , m, at all points 
within the block, then no species will ever approach extinction for any solution in 
the block, and the system is considered persistent (fig. 3). 

Note that persistence at fixed densities (definition 1) is a special case of persis- 
tence (definition 2). In the first case, the densities are either constant or are 
approaching constant values. In the second case, the densities may be fluctuating 
in a seemingly unpredictable way. 

We are interested in imposing certain structures on the system (11) and in 
determining whether those structures imply the impossibility of persistence. 

Definition 3.-A given structure will be said to exhibit "competitive exclusion" 
if no system with such a structure is persistent. 

The Volterra model described in the introduction is an example of such a 
structure. The parameters of the model are the constants n, 'yi, o-i and R max, and 
the function F. For different parameter values we obtain different systems, but 
these systems all have the same structure. Volterra proved that no system with 
this structure can be persistent, and hence that this structure exhibits competitive 
exclusion. 

More concretely, consider a two-species Volterra model (3) with F(x1, x2) = ax1 
+ ,3x2. If E,/y1 1 E2/Y2, then there are no equilibrium points with both species 
present (fig. 4a). If El/y' = E2y/2, then there is a whole line of equilibrium points 
(fig. 4b). If E!/y' < E2!Y2, species 1 will go extinct (i.e., x1 -> 0 as t -> oo), as shown 
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FIG. 3.-Two examples of attractor blocks bounded away from the faces x, =0, X2 0. a, 
A predator-prey cycle C surrounded by an attractor block B(. b, Isocline diagram and stable 
equilibrium point P of a two-competitor system. The attractor block B, has been drawn 
around the equilibrium point. 
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FIG. 4.-a, Exclusion of species I (xl) in the Volterra model when Ej/'y < E2/Y2. b, Phase 
portrait of the case E1/yj = E2/Y2. Note the line of critical points, none of which is asymptoti- 
cally stable. In neither case can an attractor block bounded away from the faces x1 =O x2 = 0 

be constructed. 

in figure 4a. If E,/!Y > E2!Y2, species 2 will go extinct. These extinctions will occur 
except in the trivial case where one species is initially absent. 

This example illustrates the exclusion principle. Note first that, except in the 
case that !/y' = E2/Y2, one or the other species exhibits a strong deterministic 
tendency towards extinction. In the exceptional case /'Y, = E., /y, the system will 
approach the line of equilibrium points. Since the line of equilibrium points 
intersects both axes, no attractor block bounded away from the axes can be 
constructed. Since no model of the Volterra type exhibits a deterministic tendency 
toward persistence, models of the Volterra type are said to exhibit competitive 
exclusion. 

We should emphasize that our criterion for competitive exclusion is essentially 
a negative one: a system which does not exhibit a deterministic tendency toward 
coexistence is considered to exhibit exclusion. An alternative approach would have 
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been to define competitive exclusion by the extinction of "excess" species. An 
example follows. 

Definition 4.-A system of n species and k < n resources or limiting factors is 
said to exhibit "strict competitive exclusion" if at least 11 - k species become 
asymptotically extinct. 

We feel that the weaker definition 3 is superior because "excess" species may 
not go extinct asymptotically. For example, consider the Volterra model de- 
scribed above. Except when El/yil 62:- Y2, all models with this structure exhibit 
strict competitive exclusion. When E!/yl = E2!Y2, all trajectories approach a line of 
fixed points (fig. 4b) and hence the system does not exhibit strict competitive 
exclusion. However, no single fixed point is asymptotically stable, and it can be 
argued that small external forces may move the system from one fixed point to 
another. Eventually, such disturbances will move the system close to the bound- 
ary, and one or the other species may be considered extinct. 

This example shows that there exist systems which exhibit no strong deter- 
ministic tendencies toward coexistence, but also in which no species becomes 
asymptotically extinct. Our criterion for competitive exclusion (definition 3) 
categorizes such systems as nonpersistent. 

4. RESULTS OF MORE RECENT INVESTIGATIONS 

The attractor block formulation of the competitive exclusion problem was first 
applied to the coexistence of two competitors on one biotic resource. McGehee 
and Armstrong (1977) constructed an attractor block for this three-species system, 
proving that a strong deterministic tendency towards coexistence could exist in 
such a system (fig. 5). 

Since that time, several further results have been proved. 

4.1. Coexistence of Any Number of Species on One Biotic Resource 

Zicarelli (1975) has extended the proof of McGehee and Armstrong (1977) to 
show that any number of species can be made to stably coexist on one biotic 
resource. Therefore, the set of abiotic resource models (eqq. [7] and [8]) does not 
exhibit competitive exclusion. 

4.2. Coexistence of Species on "Limiting Factors" 

Zicarelli's (1975) proof implies that any number of species can coexist on as few 
as two of Levin's (1970) limiting factors. To see this, note that Zicarelli's model is 
a special case of equations (7) and (8) with one resource; i.e., dxildt = xitu(R), i = 
1, . . . , n, and dRldt = Rg(R, x1, . . . , x,,). The two limiting factors are the 
density of resource R and the function g(R, x1, . . . , xn). (See Levin 1970; 
Armstrong and McGehee 1976a.) Zicarelli's result thus implies that the set of 
limiting factors models does not obey the competitive exclusion principle for k > 2 
limiting factors. Kaplan and Yorke (1977) have provided an independent proof of 
this fact for k > 3 limiting factors. 
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FIG. 5.-Attractor block for a two-predator, one-prey model. Once inside the solid torus 
the trajectory never leaves, implying a strong deterministic tendency toward indefinite 
coexistence. 

The case of one limiting factor has also been solved. McGehee and Armstrong 
(1977) showed that two species cannot coexist on one limiting factor. More 
recently, Nitecki (1978) has shown that persistent systems with n1 D, 3 species and 
one limiting factor can be constructed. Therefore, the only case in which a limiting 
factors model exhibits competitive exclusion is the case of two species on one 
limiting factor. 

4.3. Coexistence of Species on Abiotic Resources 

N species on four abiotic resources. -Armstrong and McGehee (1976b) have 
shown that it is possible to construct persistent systems of n > 4 species on four 
abiotic resources. To prove this point, we first constructed a system in which any 
number of species could coexist on a single resource in a time-varying environ- 
ment. Next we asserted that it is possible to construct three-species, three-abiotic 
resource competition systems whose solutions tend to asymptotically stable pe- 
riodic orbits. Smale (1976) has proved that such systems exist; Strobeck (1973, p. 
652) has constructed a three-species competition system, unstable near its three- 
species equilibrium point, which in computer simulations appears to approach a 
periodic orbit. 

We then combined these two subsystems, making the three-species-three- 
resource subsystem provide a periodic environment for the n-species-one- 
resource subsystem. The resulting system has n > 4 species coexisting on k = 4 
conservative resources. 

N species on one abiotic resource: Volterra revisited.-Volterra (1928) showed 
that n species could not coexist on one abiotic resource. Volterra's proof, how- 
ever, is plagued by the same drawback as many of the succeeding models: the 
assumption that the ui(R) in equations (4) are linear. It is somewhat surprising, 



162 THE AMERICAN NATURALIST 

then, that in the one-abiotic resource case the linearity assumption is unnecessary. 
The monotonicity conditions on the ui (eqq. 6) are sufficient to insure that all 
species except one will become extinct. When n species compete for a single 
limiting resource, the species which can exist at the lowest level of available 
resource will prevail. A proof is given in Appendix D. 

An open question. -The behavior of models of n species on two or three abiotic 
resources remains unknown. It seems clear to us that the methods used by 
Zicarelli (1975) could be used to show the existence of persistent systems of n 
species on three abiotic resources. The case of two abiotic resources seems much 
more delicate. However, the work of Nitecki (1978) leads us to conjecture that 
there exist persistent systems of n species on two abiotic resources. 

5. COEXISTENCE AT FIXED DENSITIES 

McGehee and Armstrong (1977) have shown that coexistence at fixed densities 
of n species on k < n resources or limiting factors is impossible. Assertions to this 
effect have been made before. MacArthur and Levins (1964) noted that it is 
"infinitely unlikely" that n planes drawn in a k-dimensional space will intersect at 
a point. They interpreted this fact to mean that the coexistence at fixed densities of 
n species on k < n resources is "infinitely unlikely." Kaplan and Yorke (1977) 
have added mathematical precision to these statements. 

Whittaker and Levin (1976) have taken issue with MacArthur and Levins, 
stating that convergent evolutionary pressures may indeed result in point coexis- 
tence of n species on k < n resources with probability greater than zero. They 
assert, however, that although such coexistence is deterministically possible, the 
fact that the community matrix at the equilibrium point is singular (has at least one 
eigenvalue equal to zero) means that the system will be extremely vulnerable to 
stochastic perturbations. Hence they too conclude that the point coexistence of n 
species on the k < n resources or limiting factors is impossible. 

We would argue, however, that a dominant eigenvalue of zero does not neces- 
sarily imply vulnerability to perturbation. Consider, for example, the model dxldt 
= x(k - x)3. This model has a dominant eigenvalue of zero, and yet is asymptoti- 
cally stable near x* = k. Furthermore, the system is rather insensitive to pertur- 
bation, in the sense that small environmental variations will not move the system 
far from its deterministic equilibrium. For example, consider any sort of environ- 
mental change which causes the carrying capacity k to vary in time. Let this 
variation be bounded, so that at any time t, 0 < k1 < k(t) < k, < cc, where k1 and k2 
are, respectively, the minimum and maximum values of the carrying capacity k(t). 
It is evident that if the population density x lies in the interval (k1, k2) at time t = 0, 
then x(t) will remain in that interval for all time. Furthermore, any trajectory 
which starts outside the interval (k1, k2) at t = 0 will eventually enter the interval, 
provided x(O) 4 0. Thus the Whittaker-Levin argument does not always apply. 

We have been able to show that n species cannot coexist on k < n resources, in 
the sense of definition 1. That is, we have been able to show that attracting point 
equilibria cannot exist for k < n. The first key word in this statement is attracting. 
Point equilibria may exist, even for k < n. However, attracting point equilibria, 
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which we consider the proper criterion for coexistence at fixed densities, cannot 
exist for k < n. 

The second key part of this statement is cannot exist. Attracting point equilibria 
are literally impossible, not just "very unlikely," when k < n. 

Our proof rests on some rather technical mathematical points. The basic 
scenario is outlined below. Those readers wishing a more precise statement of the 
proof should consult McGehee and Armstrong (1977). 

Recall that Levin's limiting factors model is defined by 

_dx xiuXii(Rl . , RAc i = 1 . . .,n 
dt (2 
R = sj(x1, . . . , x,), j = 1, . . ., k. (12) 

Note further that the class of limiting factors models contains both the class of 
abiotic resource models and the class of biotic resource models (McGehee and 
Armstrong 1977). Therefore, if we can prove that coexistence at fixed densities of 
n species on k < n limiting factors is impossible, we will automatically have 
proved the same result for both abiotic resource and biotic resource models. 

We first note that the set of systems of the form (12), and with no equilibrium 
points, is "dense" (McGehee and Armstrong 1977). In other words, if we are 
given a system of n species and k < n limiting factors, and if this system has an 
equilibrium point, we can always find a "nearby" system with no equilibrium 
points. 

We next note that a fundamental property of an attractor block is that it shares 
certain topological properties with the attractor within it. In particular, the Euler 
characteristic is shared. The Euler characteristic is an integer associated with 
every geometric object. The Euler characteristic of a point is 1, that of a circle is 0, 
that of a solid sphere is 1, and that of a solid torus is 0. An attractor block which 
surrounds a point attractor will be topologically equivalent to a solid sphere (fig. 
3b). Both the block and the attractor have Euler characteristic 1. An attractor 
block which surrounds a periodic attractor will be topologically equivalent to a 
solid torus (figs. 3a, 5). Both have Euler characteristic 0. 

A second fundamental property of attractor blocks is that they remain attractor 
blocks under slight perturbation, even though the attractor itself may change. 
Therefore, the Euler characteristic of the attractor cannot change under small 
perturbations. For example, imagine a system having a point attractor. Surround 
this point with an attractor block constructed so that the vector field is everywhere 
transverse to its boundary. Now perturb the system slightly, perhaps by altering 
one of the parameters in the original set of equations. The attractor block for the 
unperturbed system is still an attractor block for the perturbed system. Therefore, 
even though the new attractor may no longer be a point, it must have the same 
Euler characteristic as a point, namely 1. 

Given any system of n species and k < n limiting factors, we know that we can 
find a system arbitrarily nearby which has no equilibrium points. Therefore all 
atractor blocks for systems of n species and k < n resources must be topologically 
compatible with the fact that the attractor inside the attractor block may have no 
equilibrium points. Mathematically, all attractor blocks for such systems must 
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have Euler characteristic 0. (The torus of fig. 5 is an example of such a block.) 
Since point attractors have Euler characteristic 1, point attractors cannot exist. 

DISCUSSION 

We have shown that it is possible to construct systems in which n species can 
coexist on k < n resources or limiting factors. Why, then, have many authors 
(MacArthur and Levins 1964; Rescigno and Richardson 1965; Levins 1968; Levin 
1970) been led to assert that such coexistence is impossible? Three observations 
are germane. 

First, in all these earlier models, species' per capita growth rates (the functions 
ui in eqq. [4] and [7]) were assumed to be linear functions of resource densities. It 
is indeed true that if the functions ui are linear in resource densities or in limiting 
factors, persistence (Sec. 3, definition 2) is impossible (Levin 1970; McGehee and 
Armstrong 1977). This result may apply directly to species with Holling type I 
functional response curves (Holling 1965) if resource densities always remain 
below the levels needed to saturate the functional responses of the competitors 
and if the competitors' growth rates are directly proportional to resource con- 
sumption rates. However, this result will not in general apply to species with other 
types of functional response curves, except in the case k = 1 (sec. 4.3 and 
Appendix D). 

The second point is that some authors (MacArthur and Levins 1964; Levins 
1968) have considered only coexistence at fixed densities. Indeed, it can be proved 
that in a large class of biologically reasonable models, n species cannot coexist at 
fixed densities on k < n resources (Sec. 5). Because this last result does not 
require the assumption of linearity, Armstrong and McGehee (1976b) have sug- 
gested that the competitive exclusion principle will in general apply only to cases 
of coexistence at fixed densities. 

Third, note that if the assumption of linearity and the assumption of coexistence 
at fixed densities are simultaneously relaxed, it becomes possible to construct 
examples of n species coexisting of k < n resources or limiting factors. The 
species coexist because of internally generated cyclic behavior. 

These observations allow us to clarify the relationship of Volterra' s work to that 
of his successors. In the case of only one resource, the system must eventually 
approach a point equilibrium (Appendix D). Since the requirement of equilibrium 
is sufficient to assure that competitive exclusion will hold (Sec. 5), Volterra's 
linearity assumption can be relaxed without affecting his results. When more than 
one resource or limiting factor is involved, however, equilibrium is not assured, 
and the assumption of linearity becomes critical. Therefore, the assumption that 
species' per capita growth rates are linear in resource densities, an assumption 
that occurs only as a mathematical convenience in Volterra's proof, becomes 
critical in cases where more than one resource is involved. 

SUMMARY 

Recent developments in the mathematical theory of competitive exclusion are 
discussed and placed in historical perspective. The models which have been used 
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in theoretical investigations of competitive exclusion are classified into two 
groups: those in which the resources regenerate according to an algebraic re- 
lationship (abiotic resource models), and those in which resource regeneration is 
governed by differential equations (biotic resource models). We then propose a 
mathematical framework for considering problems of competitive exclusion, and 
provide examples in which n competitors can coexist on k < n resources (both 
biotic and abiotic). These systems persist because of internally generated cyclic 
behavior. We conclude that the competitive exclusion principle applies in general 
only to coexistence at fixed densities. 
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APPENDIX A 

Consider the following chemostat model of n species competing for k nutrients: 

dxi - xj[u(R1, Rk) - D], 1. 
dt 

dt-= cjjxjuj(R, - R..) + D(Cj- Rj), j 1. k. 

Herexi is the concentration of species i, R} is the concentration of nutrients, and it (R1. 
R.) is the specific growth rate of species i (cf. eqq. (4), (5), the abiotic resource model). The 
constant D is the dilution rate of the growth medium, the constant Cj is the concentration of 
nutrients in the incoming medium, and the constant c ii relates the uptake of nutrients to the 
production of species i. 

Following Canale (1970) and Waldon (1975), we introduce the variables do which measure 
the total concentration of nutrient j in the chemostat: do = Rj + >'j'= C cix. One easily 
computes that d0j/dt = D(C j - O.;), from which it follows that As exponentially approaches 
Cj, regardless of the concentrations of any of the species. 

Therefore, when considering any sort of ultimate behavior of the model (such as steady- 
state behavior), one may assume that ko = Cj. The model then reduces to 

Clx =.-i [/i(,R . ;R) - D], i 1,. 
dit 

Rj = Cj- cjisxi, j 1. k, 

which has the form of equations (4) and (5a) with ii - D replacing ii and F i(-x1 . , v ,) 

The results discussed in Sections 4 and 5 for abiotic resource models now can be applied 
directly to this class of chemostat models. For example, if k < n, then any attractor for the 
above model must have Euler characteristic zero. In particular, there can be no point 
attractors. Also, if 4 - k < n, then there exist chemostat models of the above form with 
periodic attractors; therefore the chemostat structure does not imply competitive exclu- 
sion. Finally, if k = 1, then the model does exhibit competitive exclusion. Indeed, as shown 
in Appendix D, most models of this form exhibit strict competitive exclusion. This last 
result generalizes theorems of Hsu et al. (1976) and Hsu (1978). 
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APPENDIX B 

We first show that a. species whose growth rate increases linearly with resource density 
requires the same average resource density to maintain itself in an environment where the 
resource density varies as it does to maintain itself in an environment where the resource 
level is constant in time. Second, we show that if the growth response curve saturates with 
increasing prey density, the average prey density required for maintenance in a time- 
varying environment is higher than that required in a constant environment. 

Consider a species x whose growth rate is determined by the density of some limiting 
resource R. Assume that the growth of species x is determined by the equation dxldt = 
xf(R), wheref(R) is the specific growth rate of species x as a function of resource density R. 
The response of the resource to utilization will be determined by a separate equation. 
However, the dynamics of resource regeneration are unimportant for the present argument. 

We first consider a constant environment and determine the resource level R which will 
allow the population to maintain a constant size. Assuming that (0) < Of(x) > 0, and thatf 
is strictly increasing, we see that there is a unique value R * such thatf(R *) = 0; R * is the 
resource density required for x to maintain itself in a constant environment. 

We next consider a time-varying environment and assume that the resource density is 
given by R (t ). Assume that, after some time T, the population x (t ) returns to its initial value. 
(For example, R(t) and x(t) might both be periodic with period T.) Now define R = (lT) 
oR (t ) dt, the average value of the resource density over the interval 0 -> T. Also definef(R) 

- (1/T) fjf[R(t)] dt, the average value of the specific growth rate of x. Sincex returns to its 
initial value after time T, we have 

f Idx dt log x(z) - log x(0) = 0. 

Therefore, 

I 11 ldx f(R)-- Il --dt=0. 
T oxdt 

We now ask: What is the relation between R, the average value of resource density 
required by x to maintain itself in a time-varying environment, and R*, the value of 
resource density required by x to maintain itself in a constant environment? 

The answer is immediate if f is linear, since if f(R) = aR + b then f(R) = f(R) = 0. 
Therefore R = R*. This result was first noted by Volterra (1928) in the special case of 
Lotka-Volterra population oscillations. 

Consider now the case in which the growth response f(R) saturates with increasing R; 
i.e., assume thatf is concave downward. Draw the tangent line L(R) to the curvef(R) at R 
= R* (fig. 6). Since L(R) > f (R) for R 7 R*, we have that L(R) > f(R) = 0 in a time-varying 
environment. Since L is linear, L(R) = L(R) > 0. Therefore, since L(R*) = 0, R > R*. 
Therefore, a species possessing a growth curve which is concave downward requires a 
higher average resource supply to persist when the resource level varies in time than it does 
when the resource level is maintained at R = R*. 

APPENDIX C 

Does mutual invasibility imply coexistence? For a simple two-species Lotka-Volterra 
competition model, mutual invasibility does imply coexistence, since coexistence will 
occur if each species is able to invade the equilibrium of the other. However, in higher 
dimensions the situation is more complicated. 

Consider a competition model of three species. Suppose that, in the absence of any one 
species, the remaining two come to an equilibrium. Suppose further that in each case the 
third species is able to invade the equilibrium of the other two. Do these conditions imply 
that the system is persistent? 
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L(R)/ 

0R 

FIG. 6.-Graphs of the functionsf(R) and L(R) discussed in Appendix B. The functionf(R) 
is concave downward; L(R) is the tangent line to f(R) at R = R*. 

The answer is not simple, as is illustrated in the example of three competing species 
discussed by May and Leonard (1975). For any given species pair, one species excludes the 
other so that each pairwise equilibrium point has one species absent. The third species can 
always invade this pairwise equilibrium. Therefore this example satisfies the conditions 
stated in the previous paragraph. However, the system oscillates wildly, with each species 
infinitely often coming arbitrarily close to extinction, followed by a recovery to a large 
population density. Thus the system is not persistent and illustrates the subtlety of the 
original question. 

Now consider the system of two predators and one prey discussed in Section 2. One can 
imagine that the following behavior might occur. The system starts with x l and R near their 
periodic orbit and with X2 small. Species 2 first invades, but then declines in such a way that 
the system approaches the equilibrium point (x*, RIX). Then, with x, small, the system 
approaches the periodic orbit in the (xl, R) plane, and the process starts anew. With each 
successive occurrence the minimum value of x2 becomes smaller, so that species 2 comes 
arbitrarily close to extinction infinitely often. However, each near-extinction of species 2 is 
followed by a successful invasion. If one could construct a system whose only attractor 
contains such an orbit, this system would not be persistent. 

Although the above argument is not precise, it does illustrate the danger of supposing 
that mutual invasibility always implies coexistence. 

APPENDIX D 

Consider equations (4) and (5a) with k = 1: 

dx1 = xiiiu(R), i = 1, . . ., n, dt 

R - ax-F(x I . . . , x). 

We wish to state conditions which imply that this system exhibits strict competitive 
exclusion. Nitecki (1978) showed that if no assumptions are made on the partial derivatives 
of the functions ut and F, then there are persistent systems with this form. Volterra (1928) 
showed that if the ui are linear functions, then the system exhibits strict competitive 
exclusion for most values of the parameters. The following assumptions are more general 
than Volterra's but restrictive enough to exclude Nitecki's example. 

Assume a slightly stronger version of (6): aii2l/R > 0 and aF/Oxi > 0. Assume that each 
species has a positive value of R for which it is just able to maintain its density, i.e., for 
each i there is an Ri > 0 such that 

ui(R) < 0 for R <R'I 
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ui(R) = 0 for R = Ro 
ui(R)> 0 for R > R. 

Assume that only one of the species has the smallest value of Ri*. If necessary, relabel the 
species so that Re is the smallest, i.e. R* < RP*, i = 2 . n. Let K1 be the carrying 
capacity of species 1 in the absence of all other species, i.e. K1 is the unique density such 
that F(K1, 0 . 0) = R,,,ax - R*. Given the above assumptions, we prove the following 
theorem. 

THEOREM D1. If xl(0) > 0, then, as t -.x1(t)- K, and xi(t)- > 0 for i = 2 . n. 
The intuitive idea behind the proof is the following. If the available resource R is below 

the critical level R*, then all the species will decline until R exceeds this critical level. At 
that point species 1 will start to increase while the others continue to decline. Species 1 will 
then asymptotically reach its carrying capacity while the others asymptotically approach 
extinction. 

We prove the theorem by constructing two Liapunov functions. For the basic definitions 
and examples of Liapunov functions, see LaSalle and Lefschetz (1961). 

Write x = (x1, . . ., X), Xe = (K1, 0, . . . 0). Define the three sets 

{x: xi ? 0 Vi and F(x) < Rmax - 

T={x:xi 0 Vi and F(x)>Rmax-R } 

i {x: xi O Vi and F(x) = Rmax-R*J}. 
The set X consists of all points in the state space for which the concentration of available 
resourceR is greater than the critical concentration R* , W(is the set whereR <R*, and i\ is 
the set where R = R". The union of these three sets is the entire positive orthant, and A 
forms the common boundary between the two regions X and C6. 

On i\, we have dxl/dt = 0. Therefore 

dF aOF dxi - F ~ FX(R 
dt axi dt =2 ii( 

Since ui(R*) < 0, i = 29 . . ., n, we know that dF/dt < 0 on i\ unless x xe. We have 
therefore proved the following: 

LEMMA D2. If x(tj) E A - {xJ}, then dF/dt < 0 when t = ti. 
In other words, we have shown that, except for the equilibrium point xe, any solution 

which at some time hits i\ passes immediately into A. Note that D2 also implies that 2/ is 
positively invariant, i.e. any solution which gets into X stays in X for all future time. More 
precisely, 

LEMMA D3. If x(t1) E X, then x(t) E ,A for t B ti. 
Now consider the function on 739: V(x1, x?) -x1. This is a Liapunov function on , 

since 

dV = dX1 = -Xlll(R) < 0, if xi 7 0. 
dt dt 

Therefore D2 and D3 imply 
LEMMA D4. If x(t1) E ,X and if x1(t1) 7 0, then x(t) -> x. as t -x . 
That is, any solution which gets into ,X must approach the equilibrium point x. We have 

therefore proved the conclusion of theorem DI for any solution which starts in ,X or i\. We 
have only left to prove the result for a solution starting in WC. 

Consider the function F on '6, which is a Liapunov function since 
71 

dF = _xF xiui(R) < O in '6. 
dtrue: 

Therefore the following is true: 
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LEMMA D5. If x(t1) E '6, then either (a) there exists a t2 > t, such that x(t2) A - {Xe}, 
or (b) x(t) > xe as t - oo. 

In other words, any solution which starts in 'C either approaches the equilibrium point Xe 
or hits i\. If it approaches xe, then the conclusion holds; if it hits i\, then we have shown 
above that it passes into X and then approaches xe. In either case the conclusion of theorem 
DI holds, and the proof is complete. 
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