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In the first part of this two-part article (Nature 280, 361-367), mathematical models of directly 
transmitted microparasitic infections were developed, taking explicit account of the dynamics of the 
host population. The discussion is now extended to both microparasites (viruses, bacteria and protozoa) 
and macroparasites (helminths and arthropods), transmitted either directly or indirectly via one or more 
intermediate hosts. Consideration is given to the relation between the ecology and evolution of the 
transmission processes and the overall dynamics, and to the mechanisms that can produce cyclic 
patterns, or multiple stable states, in the levels of infection in the host population. 

IN the first part of this article 1 we considered the dynamics of 
microparasitic infections with direct transmission between 
hosts. We now extend the discussion to other kinds of parasites 
and transmission processes, and examine the general relations 
between population behaviour and parasite life cycle structure. 
The conclusions are broadly similar to those in the first part 1, but 
there are interesting similarities and differences both in the 
mathematical structure and in the biological conclusions. 

We then give a brief discussion of general evolutionary trends, 
and end with a survey of the main mechanisms that can produce 
cyclic patterns, or multiple stable states, in the levels of infection 
in the host population. 

Life cycle structure and disease dynamics 
Macroparasites with direct life cycles tend to produce persistent 
infections, with the host harbouring populations of parasites for 
long periods, due to continual reinfections. Among many 
examples are the hookworm species of man, Ancylostoma 
duudenale and Necator americanus (see Table 1); in endemic 
areas the prevalence of these infections may approach2 100%. 
For such systems, the pathogenicity to the host, the rate of 
production of transmission stages of the parasite and any resis­
tance of the host to further infection all typically depend on the 
number of parasites present in a given host. A crude division of 
the host population into susceptible, infected and immune clas­
ses is therefore not helpful, and a detailed description of the 
dynamics needs to deal with the full probability distribution of 
parasites within the host population3

-6 (that is, with the number 
of hosts harbouring i parasites N(i), where i = 0, 1, 2, ... ). 
Figure 1, which is to be compared with Fig. 3 of the first part of 
this article 1

, depicts the essential structure of such models. 
It is often useful to simplify these models by making a 

phenomenological assumption about the statistical distribution 
of parasites among hosts3

•
7

-
10 (or even, occasionally, by making 

assumptions that permit this distribution to be deduced 
theoretically1u 2

). A usual phenomenological assumption is that 
the parasite distribution is a negative binomial 3

•
7

-
10

•
13

·
14

, with 
the parameter k providing an inverse measure of the degree of 
parasite 'clumping' or overdispersion within the host popu­
lation; the limit k-+ oo corresponds to the parasites being dis­
tributed in an independently random or Poisson form, while 
very small k corresponds to very high clumping. It is then 
possible to use such statistical moments of the N(i) distribution 
as the total host population (N = LN(i)), the number of unin­
fected hosts (X= N(O)), the total parasite population (P = 
I, iN(i)), and the mean parasite burden per host (m = P/ N). In 
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this way, models of the kind depicted in Fig. 1 can be brought 
into correspondence with the coarser models of the kind dis­
cussed in Part I (see Fig. 3 of Part I) 1

• 

The most detailed study of this type3
•
4 draws on a synoptic 

collection of data for direct life cycle parasites (mainly 
helminths), and describes the dynamics in terms of three 
differential equations, for the number of hosts N, parasites P', 
and free-living infective stages w: 

dN/dt=(a-b)N-aP (1) 

dP/dt = {3wN -(11- + b +a)P-a(k + 1)P2 /(kN) (2) 

dw/dt = AP-cw -{3wN (3) 

Here the birth and death rates a and b are as definerJ in the first 
pare of this article, as is the transmission paramreter {3 (hosts 
acquire individual adult parasites at a rate proportional to the 
number of contacts between hosts and parasite ;,nfective stages, 
{3wN). The parasite-induced host death rate f,or, equivalently, 
depression of the birth rate) is taken to be lin'.::arly proportional 
to the parasite burden in a given host, at a -rate a per parasite. 
The parasites are distributed as a neg;ative binomial with 
parameter k; 11- is the natural mortality re~.te of adult parasites; A 
is the rate of production of infective stages by an adult parasite; 
and c is the death rate of these infective stages. The biological 
underpinning of these equations., and their dynamical 
behaviour, have been expounded in. detail elsewhere3

'
4

• 

A rough understanding of the rel.ation between this system of 
equations for typical macroparasites with direct transmission, 
and the earlier set of equations (8)-(10) of Part I for directly 
transmitted microparasites, ca•n be obtained as follows. First, 
note that the lifespan of the fu~e-living infective stages is usually 
much shorter than that of the host and the adult parasite 
(compare Table 1). Thus thf~ set of differential equations can be 
decoupled, by assuming fne 'short lived' infective stages are 
adjusted essentially instl.',ntaneously to their equilibrium level 
(dw/dt = 0) for any given value of Nand P. This gives 

dN/dt=rN -aP (4) 

ANP a(k + 1)P2 

dP/dt =----(11- +b+a)P kN (5) 
Ha+N 

(where r =a- b and H 0 = c/ {3). Second, a phase-plane analysis 
now lays bare t'ne properties of this pair of equations. 

Three patterns of dynamical behaviour are possible3
·
4

• (1) If 

A -(~J-+b+a)>r(k+1)/k (6) 
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Fig. 1 Diagrammatic flow chart for a directly 
transmitted infection, based on a model with 
compartments for the number of hosts, N(i), 
harbouring i parasites (i = 0, 1, 2, ... ). The 
model has a structure similar to, but obviously 
more complex than, that of Fig. of 3 Part 11• 

Death of hosts 
as a function 

of i 
....__ ___ -~--

the parasite regulates the host population to a stable equilibrium 
value. The average parasite burden per host settles to 

m=r/a 

(2) If Equation (6) is not satisfied, but 

A-(~L+b+a)>O 

(7) 

(8) 

the host population continues to grow exponentially, but at a 
rate 

p = r-[A -(#L + b +a)][k/(k + 1)] (9) 

This is less than the disease-free rate, r. In this case, the mean 
pa.rasite burden in the exponentially growing host population 
setdes to the value 

m -+(r-p)/a (10) 

In eit,her event, if the host population is initially below the 
value 

NT= Ho(#L +b+a) 
A-(#L+b+a) 

(11) 

the parasite cannot become established (dP/dt<O). However, 
as long as equation (8) is satisfied, the host population will grow 
exponentially (at the rate r) until this threshold value NT is 
exceeded, whereupon the infection will become established, 
either regulating th,e host population or at least slowing its 
growth rate. Furthermore, in view of the large values for the 
reproductive output A of most helminth parasites, NT will 
typically be relatively !>'mall. This expectation of commonly 
finding direct life cycle belminth infections persisting in low 
density host populations is borne out by the evidence15

•
16

• 

(3) Finally, if A is so small,that equation (8) is not satisfied, the 
infection can never become established (NT is negative!). 

The similarities between cast~s (1) and (2) here, and the results 
displayed in Fig. 4 of Part I, .are striking. In particular, for 
measures of the prevalence of inf,ection, notice the exact formal 
equivalence between equation (15) of Part I and equation (7), 
and between equation (17) of Part I and equation (10). A 
dissimilarity is that whereas the ability of a microparasitic 

Table 1 Expected lifespans of the host and para,.itic stages involved in the life 
cycle of Schisi<Jsoma mansoni and Ancylostoma duodenale 

S. mansoni 
(refs 24, 29, 82) 

A. duodena/e 
(ref. 2) 

Population 

Man (primary host) 
Adult parasite 
Infected snails (intermediate host) 
Cercariae 
Miracidia 

Man 
Adult parasite 
Free-living infective stage 

Lifespan (yr) 

50.00 
5.00 
0.10 
0.003 
0.0009 

50.0 
1.0 
0.1 

infection to regulate its host population essentially depends on 
its pathogenicity a exceeding the host population growth rate r 
(weighted by rates of recovery, loss of immunity and so on: see 
Table 1 of Part 1), for a macroparasite it is its net reproductive 
ability, A - (#L + b +a), that plays a central role (A is the 'birth 
rate', while #J., b and a are the natural parasite, natural host and 
parasite-induced host death rates). The macroparasitic infection 
can never persist if this effective net reproductive rate is not 
positive (equation (8)). The parasite will regulate the host 
population, or merely slow its growth, depending on whether 
this effective net reproductive rate A - (#L + b +a) is, or is not, 
greater than the host reproductive rate r, weighted by a factor 
(k + 1) I k to allow for the clumped distribution of parasites. Thus 
equation (6) is for these directly transmitted macroparasites the 
analogue of the microparasite equation ( 13) in Part 11

• 

Indirect life cycles constitute another qualitatively different kind 
of complication, arising when the life cycle of the parasite 
involves one or more intermediate hosts. This happens for both 
microparasites (for example, the arthropod-borne viruses or 
arboviruses such as yellow fever or Rocky Mountain spotted 
fever; the protozoan malaria species) and macroparasites (for 
example, schistosomes, the filarial worms causing onchocer­
ciasis, and other roundworms and flatworms that involve 
dipteran, molluscan and other intermediate hosts). Malaria and 
schistosomiasis in human populations are the two parasites 
whose transmission cycles have been most fully studied and each 
enjoys its own independent and growing literature, both 
empirical and theoretical (see Table 2). Their basic dynamical 
character is, however, in many respects common to all parasites 
with indirect life cycles. 

If we adopt the approach of equations (8H10) and Fig. 3 
discussed in part I, namely dividing the host population into 
susceptible, infected and immune categories, we will in the 
simplest case have a system of six differential equations: three 
for the primary host (alternatively referred to as the definitive 
host, or final host) classes X, Y, Z; three for the intermediate 
host populations X', Y', Z'. All existing models, however, 
assume the total populations of both primary host (N =X+ Y + 
Z) and the intermediate host (N' =X'+ Y' + Z') are constant, 
unaffected by the dynamics of the disease. This reduces the 
system to four equations. If, furthermore, immunity is either 
ignored or handled by specific assumptions about 'superin­
fection', the Z and Z' classes are effectively removed to give two 
coupled differential equations for the number of primary hosts 
Y, and of intermediate vectors Y', that are infected. This, in 
essence, is the source of the classic Ross-Macdonald17

•
18 malaria 

equations, the Nasell-Hirsch19 schistosomiasis model, and the 
Dietz20 arbovirus equations. 

These equations have been subjected to various kinds of more 
refined treatment, including age structure2o.-

24
, immunity and 

'superinfection>~7'21 " 23-26 and the use of several immunological 
categories of hosts26 (intermediate between Fig. 3 of Part I and 
Fig. 1 of Part II). However, essentially all the existing work on 
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indirectly transmitted parasites retains the assumption that the 
populations of host and intermediate vector are constant, not 
dynamically involved with the infection. Analysis of such models 
reveals threshold relations 17

'
20

·
2

' ·
2
'·

28 between N and N', 
analogous to but more complicated than the NT of the direct life 
cycle models. If N and N' lie below the threshold combination, 
the disease cannot be maintained. 

For many human, and other animal, infections by parasites 
with indirect life cycles, what is needed is a theory in which the 
populations of primary and intermediate hosts are affected, and 
possibly even determined, by the presence of the infection. 
While it may often be reasonable to treat a human primary host 
population as roughly constant, we believe that cases where 
intermediate host populations are unaffected by the prevalence 
levels of the infection will be the exception rather than the 
rule29

• There is no formal problem in extending our dynamic 
models of either the 'microparasite' kind of equations (8)-(10), 
(Part I) or the 'macroparasite' kind of equations (1)-(3) (Part 
II), to encompass the added complication of one or more 
intermediate vector populations. Space forbids a full exposition 
of the emergent properties, but the main trends are indicated in 
the following section. 

Time scales and transmission terms 
A full model for an indirectly transmitted parasite might include 
not only dynamical descriptions of the prevalence of infection in 
primary and intermediate host populations, but also additional 
differential equations (analogous to equation (3)) for the free­
living transmission stages that carry the parasite from primary to 
intermediate host, and back again. For example, for schis­
tosomiasis we could add a differential equation describing the 
miracidia! stage (man to snail), and another for the cercaria! 
stage (snail to man), to the usual equations for infection levels in 
the human and snail populations30

• The reason this is not 
commonly done can be seen from Table 1; the dynamics of the 
free-living stages takes place on a time scale so much shorter 
than the other time scales in the system that miracidia! and 
cercaria! populations can be assumed to have the equilibrium 
values appropriate to the prevailing conditions among human 
and snail populations. In just this way, we collapsed the three­
equation system (1)-(3) to the two equations (4), (5). 

This technique of using biological insights about the ~ime 
scales of various infection processes can be used to make further 
rough but useful approximations. For example, the time scales 
for processes (such as mortality rates) within the intermediate 
host population are typically significantly shorter than those in 
the primary host. Again, Table 1 testifies to this. Accordingly, 
we can assume that the numbers of susceptible, infected and 
immune intermediate hosts are adjusted to have the equilibrium 
values (dX'/dt = 0, and so on) appropriate to the current levels 
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of infection in the primary hosts. In this way, parasitic infections 
with indirect life cycles can be approximately brought to a form 
similar to that of equations (8)-(10) in Part I for direct life 
cycles' . 

As a concrete example, consider a grossly oversi~lified 
model for malaria, in which 'superinfection ' 17

'
25

'
2 

, and 
mosquito Jatency17

'
21 (and immunity20

'
26

), are ignored. Assume 
also the total mosquito population is constant; N' =X'+ Y' = 
constant. The populations of infected humans Y, and mosquitos 
Y', then obey 

dY/dt=P'Y'X-(b+a+v)Y (12) 

dY'/dt=t3Y(N'- Y')-(b ' +a'+v')Y' (13) 

Here /3, b, a and v (plain for humans, primed for mosquitos) 
have their previous meanings; conventionally, most infected 
humans are assumed to recover (v »a, b), and most infected 
mosquitos to die at a rate largely unaffected by the infection 
(b' »a', v'). The assumption that mosquito processes happen on 
a relatively fast time scale enables Y' in equation (12) to be 
determined by setting dY'/dt=O in equation (13), leading to 

d Y/dt = Y[(f313'N'X)/(b' +a'+ v' +f3Y)-(b +a+ v)) 
(14) 

This is exactly of the form for a directly transmitted infection 
(equation 9 of Part I), except that the simple transmission 
coefficient t3 has been replaced by the more complicated factor 
PP'N'/(b' +a'+ v' + f3Y). Similarly, the Naseli-Hirsch two 
equation model19 for prevalence of schistosomiasis among 
humans and snails can be collapsed to Macdonald's27

•
28 single 

equation for prevalence in the human population. 
Conversely, for humans the total population is often growing 

on a time scale that is long compared to the relevant time scales 
of even persistent infections. This is why the total populatton can 
be treated as a constant in most epidemiological models. The 
approximation, whereby the dynamics of the prevalence ( Y/ N) 
and of the total population (N) are decoupled, can often be 
useful in discussing the transmission cycle of the infection, even 
though the long-term growth or regulation of the host popu­
lation is affected by the presence of the infection. 

Table 2 uses these ideas to attempt to give a schematic account 
of the relations among some of the many models, of differing 
degrees of complexity, that are to be found in the literature. 
Saturation of transmission terms. The transmission terms 
obtained in equation (14) by 'collapsing out' the mosquito 
dynamics of equation (13), and in equation (5) by collapsing 
equation (3) for the free-living infective stages of the parasite, 
manifest a feature that is common to all such approximate 
representations of complex transmission processes3

.4·
14

·
31

•
32

• 

Essentially, the simple term PXY for direct transmission 

Table 2 Schematic representation of relationships between various kinds of models for parasitic infections, based on relative time scales of population processes 

In considering the dynamics of infection, only one 
species is involved (for example, the host species). 

In considering the dynamics of infections, two or more 
species are involved (e.g., primary and inter­
mediate host, or host and parasite population). 

Host population(s) constant 

Direct life cycles Classical epidemiological models 
(refs 21, 56, 65 , 67. 83-84, 87). Models for the 
dynamics of a parasite population within a host popu­
lation of fixed size (refs 5, 88, 89). 

Indirect life cycles. Models for schistosomiasis (refs 28, 
34, 90) and for malaria (refs 17, 18, 21). considering 
only the dynamics within the human host. 

Direct life cycles. Models similar to the classical epide­
miological equations, but including the dynamics of 
free-living infective stages (ref. 35). 

Indirect life cycles. Models for schistosomiasis (refs 19, 
34, 92), malaria (refs 17, 21, 93) and arbovirus 
infections (ref. 20) in which both human hosts and 
intermediate vectors are considered. Models of 
schistosomiasis where humans, snails, miracidiae and 
cercariae are all considered (ref. 30). 

Host population(s) a dynamic variable 

Direct life cycles. Models similar to those for classical 
epidemiology, but with total host population a 
dynamic variable, determined by birth and death 
processes (refs 35, 91 and this review). 

Direct and indirect life cycles. Dynamics of models in 
the compartment below but with all populations but 
the primary host 'collapsed out' (this review). 

Direct life cycles. Models similar to classical epidemi­
ology, but with host population and free living 
infective stages both included as dynamic variables 
(ref. 35). Models for dynamics of host parasite systems 
(refs 3, 4, 7, 8, 14, 35), sometimes with dynamic 
aspects of free-living infective stages also included 
(refs 3, 4). 

Indirect life cycles. Any of the models in the compart­
me nt to the left, but with the total host populations 
treated as dynamic variables (this review). 
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between susceptible and infected people or {JNw for direct 
transmission between hosts and free-living infective stages are 
replaced by expressions of the general form AXY/(1 + 11 Y) or 
ANP/(1 + 11N), respectively. In the limit when, for example, 11 Y 
is small, the expression has the familiar form, proportional to X 
and Y But it can be that 11 Y becomes significant compared to 
unity, whereupon the transmission term saturates to a value 
(AX/ 11) proportional only to X. Such saturation effects can be 
important in diminishing the ability of the parasite to regulate its 
host population3·14

• 

Ecology of the transmission process. Further complications can 
arise from the ecological nature of the individual links in the 
transmission process. 

For infections that are communicated directly, the assumption 
that the net rate is proportional to the number of susceptibles 
and to the number of infectives is clearly reasonable for many 
diseases, and strikingly successful in explaining the mouse pox 
and mouse pasteurellosis data1. But for sexually transmitted 
diseases, for example, this is only plausible in a population that is 
astonishingly promiscuous and sexually active. In a society 
whose members typically have only a small number, 77, of sexual 
partners (independent of the absolute population size), the rate 
at which an infected person propagates the infection is propor­
tional not to the total number of susceptibles, but to 71 times the 
probability that a given person is a susceptible; that is, {JXY is to 
be replaced21 by f371XY/ N. Under these very simple assump­
tions, the condition for maintenance of such diseases is f371 > 
(b +a+ v ), independent of the population size. In reality, a 
more careful treatment of the distribution of degrees of sexual 
activity within the population is needed33, but the fact remains 
that infections of this sort are relatively easy to maintain in low 
density populations. 

More broadly, biological insights into the relative time scales 
associated with the various phases of indirect life cycles enable 
us to discuss the prevalance of infection in the primary host 
population by retaining equations (8) and (10) for X and Z, in 
Part I of this article, but replacing equation (9) with the more 
general expression 

dY/dt= Y[h-(a+b+v)] (15) 

The transmission term is here denoted by h (Ross' 'happen­
ings.t8), and the threshold condition for the disease to increase 
upon introduction at low levels is clearly that h >(a+ b + v) in 
the limit Y ~ 0. For the simple circumstances of the indirect life 
cycle that led to equation (14) above, this requirement comes 
down to the threshold criterion20·21 

(a +b +v)(a'+b'+ v') NN' > .:...._ __ _;_:....__ __ ___:. 
(3(3' 

(16) 

Note that a large population N' of intermediate vectors can 
enable the disease to persist, even when the primary host 
population N is small. 

However, for malaria and many other infections borne by 
biting arthropods, the intermediate vector tends to make a fixed 
number of bites per week, independent of the number of 
primary hosts available to feed on. Thus the transmission rate 
from infected arthropods to people (and from infected people 
back to susceptible arthropods) is proportional to the biting rate 
w times the probability that a given human is susceptible (or 
infected), and not simply proportional to the number of suscep­
tible (or infected) people. That is, in equations (12) and (13), f3 
and (3' are to be replaced by w/ N. The threshold condition (16) is 
accordingly modified to 17"18'20 

N' (a+b+v)(a'+b'+v') 
->-'----_;_'-:;------'-
N w 2 (17) 

Note that latency effects have been neglected here, although 
they can be important in infections with indirect life cycles, and 
they certainly modify threshold conditions significantly for 
malaria17 and schistosomiasis29. Infections with intermediate 
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vectors of this character are relatively easy to maintain at low 
population densities of the primary host, provided only that the 
ratio of intermediate to primary hosts is sufficiently high. 
Indeed, equation ( 17) suggests the infection is actually easier to 
maintain at low host population levels; the mosquito or other 
intermediate host population N' is, however, typically depen­
dent on the primary host for blood meals or the like, so that 
things are not as simple as they might seem. (A more general 
discussion, from which the threshold relations (16) and (17) 
emerge as limiting cases, has been given by Dietz20). 

Yet another form of complication enters with parasites that 
have sexual stages, yet can have low densities, in a host. Schis­
tosomiasis is one such example 10"19"27'28'34. At high levels of 
prevalence of the infection in the human population, people 
tend to have worm burdens such that most adult female schis­
tosomes are mated, and the circumstances leading to equation 
(16) are well approximated. But at low levels of prevalence, it 
can be that the average female is not mated, which tends to 
require that the transmission link from snail to man be counted 
twice in considering the overall cycle, thus giving complicated 
threshold conditions (very roughly of the form N[N'f> 
constanrt9

"
34). 

Finally, note that (apart from the laboratory experiments on 
mice 1) in all our models the host population either is regulated to 
some stable value by the disease, or else it grows exponentially. 
In practice, other constraints, set by resources, predators or the 
like, will eventually limit population growth. Such biological 
realities can be included in all our models, by introducing a 
logistic constraint (at a 'carrying capacity' K) in the growth of 
the disease-free population35. The resulting situation, for both 
direct and indirect parasite life cycles, is similar to that illus­
trated in Figs 1e, f and 2b in Part I, with the host population 
depressed below its disease-free level K, provided the parasite­
induced host mortality a is not too large 1• Too small an a leads 
to relatively little depression of the host population; too large an 
a renders the disease unable to persist, and the host population 
remains at K; maximum parasite-induced depression of the host 
population is attained for intermediate levels of pathogen­
iciti·36. This broad statement glosses over many intricacies 
that can arise (R.M.M. and R.M.A., in preparation), particularly 
with indirect life cycles when the intermediate vector has a 
constant biting rate (producing threshold conditions such as 
equation (17) in simpler models), but the gist is true. 

Population parameters and evolutionary 
trends 
Any discussion of the relations among the population 
parameters that characterize an infectious disease must ulti­
mately take account of the evolutionary pressures on both hosts 
and parasites. Population dynamics is always confounded by 
population genetics. 

For example, even if we assume no genetic change in the 
parasite, its action on the host will select for individuals with 
reduced susceptibility to the disease. For this reason alone, the 
pathogenicity of the parasite will tend to decrease through 
evolutionary time. Conspicuous examples are provided by the 
presence of the sickling gene (and other blood-group 
phenomena) in regions where malaria is endemic37, and by the 
history of myxomatosis in rabbit populations in Australia38. An 
interesting theoretical discussion has been given by Gillespie39. 

Selective forces also act strongly on the parasites40'41 . As we 
have seen, the persistence of a disease is facilitated by low 
pathogenicity and by long duration of infection 1• Countervailing 
forces can, however, act to increase the virulence of an infectious 
disease; increased pathogenicity may often be associated with 
enhanced rates of production (within the host) of the parasite's 
transmission stages 38

.4
2.43 . 

The regulatory potential of an infectious disease will, there­
fore, typically change as time goes by. A parasite may stably 
regulate its host population during their early association. But, 
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as selective pressures reduce the average susceptibility of the 
hosts, such regulatory effects will tend to wane. Eventually, the 
host population may escape being controlled by the parasitic 
infection. 

Because the generation times of most hosts are several orders 
of magnitude longer than those of their parasites, it is tempting 
to conclude that selection acts more rapidly on the parasites. 
However, the way parasitic infections act within host popu­
lations makes it likely that the parasites force the pace of host 
evolution to keep in step with, or even ahead of, their own 
evolution. 

Among the recondite variety of strategies that parasites have 
evolved for persistence and transmission, some general trends 
can be discovered. For example, many parasitic species traverse 
links in community food webs by virtue of predator-prey asso­
ciations between primary and intermediate hosts. Such asso­
ciations, which include biting arthropods feeding on vertebrates, 
have played an important part in the evolution of complex life 
cycles. The high transmission efficiency {3 of these links suggest 
the threshold host populations for maintenance of such parasites 
will be low (see equations (16) and (17)). Consequently, we 
expect indirect life cycles to predominate among parasitic 
infections of hosts that exist at low density. 

In contrast, directly transmitted microparasites that require 
high host densities in order to persist should be more commonly 
associated with animals that exhibit herd or shoaling behaviour, 
or breed in large colonies. Empirical evidence in support of 
these ideas comes from the abundance of directly transmitted 
viral and bacterial infections within modern human 
societies42

'
44

, large herds of ungulates45
, breeding colonies of sea 

birds46
'
47

, and the social insects4 8
'
4 9

• Those diseases with direct 
life cycles that do persist within low density host populations 
should possess distinctive characteristics, such as long-lived 
infective stages50

'
51

, failure to induce lasting immunity33
·
52

-
53

, or 
ability to persist within the host for very long times54

. 

Another trend to be noted is that highly pathogenic species 
usually exist, if at all, at low levels of prevalence (see equations 
(15) and (17) in Part I and equations (7) and (10) in Part II). An 
example is the digenean parasite Haematolaechus colaradensis 
whose primary host is frogs, but which has a transmission 
pathway involving first snails, and then dragonflies, as inter­
mediate vectors on the way to the next frog. The prevalence 
among frogs is high, 60-70%, and the parasite is long-lived and 
has very low pathogenicity; in dragonflies the fluke induces 
moderate mortality, and has 30-40% prevalence; while in snails 
it is highly pathogenic but appears to have only about 5-10% 
prevalence 5 5

• These broad patterns, which are often found in 
helminths with life cycles involving two or three host species, are 
summarized schematically in Table 3. 

Cyclic patterns of disease prevalence 
Annual or other cycles in the prevalence of infection are often 
observed, and can arise in at least three distinct ways. 

First, for many short-Jived viral and bacterial infections in 
human populations, there is a propensity for the steady, endemic 
level of prevalence of infection to be attained by damped 
oscillations. Particularly if this equilibrium prevalence is low, it 
is possible for stochastic fluctuations in the number of people 
infected at the minimum of the cycle to, in effect, keep the cycle 

Table 3 Some population characteristics of diseases caused by indirectly trans­
milled helminths 

Host 

Final 
Second intermediate 
First intermediate 

Expected life 
Prevalence of span of host 

infection (inversely related 
Pathogenicity within host to time scaled 

of parasite population dynamics) 

Low High Long 
Medium Medium Medium 

High Low Short 
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'pumped ' and prevent it from damping to equilibrium. This 
interplay between demographic stochasticity and an inherent 
propensity to weakly damped oscillations is essentially the 
mechanism proposed in the classic work of Bartlett 2 u 6

-
59 to 

account for cyclic patterns in the prevalence of measles and 
other viral infections in large cities. Gurney and Nisbet60 have 
proposed a similar mechanism as an explanation for predator­
prey cycles. 

Second, time dependence in any of the population parameters 
may, in principle, produce cyclic variations in infection. In 
particular, seasonal variation in the transmission coefficient is 
important in setting temporal patterns for many parasitic 
infections, and may often be central for human viral 
infections44

'
61

-6
5

• The mechanisms underlying the seasonality in 
the transmission rates are poorly understood, but for human 
viruses the main causes are probably climatic (temperature and 
humidity) effects influencing survival and dispersal of trans­
mission stages, and seasonal changes in social behaviour6 6

'
6 7 

(children returning to school after the long summer vacation) . 
The seasonal cycles characteristic of the prevalence of measles, 
chicken pox, poliomyelitis and mumps in large cities could arise 
in this way 21

.4
4 .65. 

Annual periodicity in transmission rates can, moreover, 
produce complicated nonseasonal cycles in the prevalence of 
infection. Yorke and co-workers4 4

'
63

'
65

, and Dietz64
, have 

cogently argued that such a mechanism is responsible for the 
regular biennial cycle, alternating between years of high and low 
incidence, for measles in New York City between 1948 and 
1964; in the same city, mumps and chicken pox showed clear 
annual cycles. The explanation of Yorke eta/. is to the contrary 
of the conventional explanation of these non-seasonal cycles in 
terms of demographic stochasticity, as described above. Their 
model is essentially the set of deterministic equations (1)- (3) in 
Part I, with an assumed constant number of new susceptibles 
appearing each year, life-long immunity, and with the system 
enriched by the inclusion of a brief incubation period during 
which infected hosts are not infective. The basic feature is that 
the transmission coefficient {3(t ) varies seasonally with a 1 yr 
period. Within a narrow window of parameter values, the 
number of infected people can show biennial peaks (Fig. 2a) 
similar to those for measles in New York City. This window 
separates highly transmissable diseases which produce an epi­
demic with eventual fade-out , from the diseases with low 
transmission efficiency which give rise to endemic seasonal 
patterns of infection (Fig. 2b ), as usually shown by mumps and 
chicken pox. 

Third, various kinds of nonlinearities in the transmission 
terms may produce sta!Jie limit cycles, whose periods depend on 
the population parameters and will rarely be seasonal. People 
familiar with the ease whereby stable limit cycles arise in preda­
tor-prey models may be surprised to learn the structure of most 
host-parasite models is such that stable cycles do not easily 
occur. However, they can be produced without excessive 
contrivance. One simple example is to take the basic equations 
(8)- (10) of part I, and introduce the possibility of saturation in 
the transmission by replacing {3XY by AXY/(H0 +X). Such a 
modification can arise naturalll'3 5

, in the manner of the analo­
gous expression in equations (5) and (14), if the term is thought 
of as deriving from the 'collapsed' dynamics of a free-living 
infective stage. This system can now exhibit stable limit cycles 
for a specific range of parameter values (corresponding to A 
neither too small nor too large). One such stable cycle is 
illustrated in Fig. 2c. In general, however, little is yet agreed 
about the kinds of biological processes that can generate 
nonseasonal patterns of disease prevalence. 

Multiple stable states of disease prevalence 
A growing number of empirical and theoretical studies suggest 
that many natural assemblies of plants and animals can have a 
multiplicity of alternative stable states6 8

• Once two or more 
stable statesare possible, the actual state the system settles into 
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Fig. 2 a, Simulations of recurrent outbreaks of measles in New York 
City, showing biennial peaks superimposed on an underlying seasonal 
cycle (from London and Yorke44

). b, Simulations44
"
63 of recurrent 

outbreaks of mumps in New York City, with simple seasonal peaks, 
annually. c, Simple limit cycle behaviour generated by the model 
described in the text. d, The transmission threshold, alternative stable 
states, and 'breakpoint' phenomena that arise in simple models for the 
transmission dynamics of schistosomiasis 10·19·27·28·34 ; the features are 
as discussed in the text. e, Transmission threshold and alternative 
stable states arising in a model for directly transmitted helminth 
infections, where it is assumed that the pathogenicity of the disease is 
related to the nutritional state of the hoses. The graph shows the mean 
equilibrium burden of parasites per host, m*, as a function of a 
parameter, T, representing transmission efficiency. The infection 
cannot persist below a threshold value T 1 ; between T 1 and T2 there is a 
unique low level of disease endemicity; between T2 and T3 two stable 
levels of prevalence may occur, one high and the other low, separated 
by a breakpoint (the dashed line); above T3 there is again a unique 
equilibrium level, corresponding to high average parasite burdens per 
host. The arrows indicate the stable state to which the system will sw 

from a given initial value. 

depends on the initial conditions. The system will tend to 
recover its original configuration if subject to small disturbance, 
but sufficiently severe perturbations are liable to precipitate it 
into an alternative state in a different region of the dynamical 
landscape. 

The nonlinearities in population models for parasitic 
infections can generate such multiple states by three principal 
mechanisms: worm pairing for sexual reproduction in the pri­
mary host; nonlinearities associated with the transmission from 
primary to intermediate host, or vice versa (mosquitos biting 
man for malaria, or predatory primary hosts consuming infected 
intermediate-host prey); parasite pathogenicity dependent on 
the nutritional state of the host. 

The first and most fully studied of these categories arises for 
many helminth infections with indirect life cycles, such as 
schistosomes 10

"
19

"
27

•
28

"
34

• It serves to exemplify the phenomenon. 
As portrayed in Fig. 2e, the equilibrium value of the mean 
parasite burden per human host (m) will be zero if the rate of 
transmission (T) from snail to man is below the threshold value 
T1. Above this threshold, two alternative stable states occur, one 
of endemic infection (m > 0), the other of parasite absence 
(m = 0). The basic reason is that at low levels of m the female 
worms are unlikely to be mated, so that the disease cannot be 
maintained, even though the transmission parameters are such 
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as to permit its endemicity if introduced at high v.alues of m. The 
two stable states (valley bottoms in the dynamical landscape) are 
separated by a 'breakpoint' (watershed), indicated by the dashed 
line in Fig. 2e; disturbances severe enough to transgress the 
breakpoint will carry the system from one state to the other. 

These threshold and breakpoint concepts are of obvious 
importance to epidemiologists concerned with disease 
eradication 10

'
27

'
28

. 

Of special importance are the effects that can arise from the 
now widely recognised fact that the impact of an infection is 
often related to the nutritional state of the host69

-
75

• Broadly 
speaking, malnourished hosts have lowered immunological 
competence, and are less able to withstand the onslaught of 
infection 76

-
78

. The effective pathogenicity of a parasite therefore 
tends to increase as host density rises to a level where competi­
tion for available food resources is severe79

'
80

• Given certain 
reasonable assumptions35 about the exact relation between 
pathogenicity (a) and host density (N), two stable states may 
occur for a given set of rate parameters. The outcome of such a 
model35

, for a directly transmitted helminth infection, is shown 
in Fig. 2d. Both states reflect stable endemic disease: one 
equilibrium is characterized by high host density and low worm 
burdens; the other by low host density (severely depressed by 
the disease) and high average burdens of parasites. As for the 
schistosome model of Fig. 2e, the two states are separated by a 
breakpoint or unstable equilibrium. 

The discontinuous switch from low to high levels of infection, 
following a disturbance severe enough to cross the breakpoint, 
will show up as an apparent 'epidemic' outbreak of disease, 
typically producing many host deaths. Interestingly, many 
documented accounts of disease outbreaks are for host popu­
lations at high densities, where stress induced by overcrowding 
or malnutrition is presenC'·72

• It is very likely that such out­
breaks are to be explained35 by the alternative stable states 
produced by close links between pathogenicity and nutrition or 
stress, rather than by the commonly accepted hypothesis of 
enhanced transmission with high density populations81

• 

Parasitic infections with very complex life cycles may possess 
more than two stable states, particularly if predator-prey links 
are involved in the transmission from one host to the next, as is 
the case for many helminth parasites. There is a desperate 
paucity of data, from field or laboratory, bearing on these 
general points. 

Conclusion 
This two-part article has blended some new theoretical studies 
and new analysis of existing laboratory data with a review and 
synthesis of past and present models for the overall transmission 
dynamics of parasitic infections. We have defined 'parasite' 
broadly to include viruses, bacteria and protozoans along with 
the more conventional helminth and arthropod parasites, and 
we have concentrated attention upon the circumstances under 
which the infection may significantly alter the growth rate of its 
host population. 

Some of the theoretical conclusions can be pleasingly suppor­
ted by hard data, while others remain more speculative. On the 
whole, our main goal is to help elevate the study of host-parasite 
population dynamics to its proper place in ecological thinking; 
parasites (broadly defined) are probably at least as important as 
the more usually-studied predators and insect parasitoids in 
regulating natural populations. 

We are grateful to many people, and particularly to Mary 
Anderson, David Bradley and James Yorke, for their help. This 
work was supported in part by the NSF, under grant DEB77-
01565. 
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Radio studies of the double 
QSO, 0957 + 561A, B 
G. G. Pooley 
Mullard Radio Astronomy Observatory, Cavendish Laboratory, Cambridge, UK 

I. W. A. Browne, E. J. Daintree, P. K. Moore, R. G. Noble & D. Walsh 
University of Manchester, Nuffield Radio Astronomy Laboratories, Jodrell Bank, Macclesfield, Cheshire, UK 

The radio source 0957 + 561 has at least four components. 
Two coincide with the optical QSOs, which is in 
accordance with the hypothesis that the QSOs are images of 
a single object due to a gravitational lens. There are details 
of spectra and structure which are more difficult to reconcile 
with the hypothesis. 

THE pair of QSOs 0957 + 561A, B have been shown to have 
remarkably similar optical characteristics by Walsh, Carswell 

0028-0836/79/320461-04$01.00 

and Weymann 1 and they suggest that the QSOs may be two 
images of the same object formed by a gravitational lens. The 
detailed properties of the radio source are clearly of great 
interest, and we present here a radio map and other observations 
discussed in the context of a gravitational lens. 

Observations 
The total flux density of the radio source has been measured at 
various frequencies summarised in Table 1. The data are consis­
tent with a flux density Soc 1-1 o.

65
• The two observations at A 6 em 

suggest the possibility of variability. 
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